【题目】已知.
(1)当时,求的单调区间;
(2)设,且,求证:.
【答案】(1)单调增区间为,单调减区间为;(2)证明见解析
【解析】
(1)利用导数证明单调性即可;
(2)利用导数证明函数在上单调递增,且,又,不妨设,则有;利用分析法得出要证,只需证明,其中,构造函数,利用导数证明其单调性,得出在的最小值大于4,即可证明.
(1)当时,
∴,
令,解得或
令,解得
因此的单调增区间为,单调减区间为.
(2)∵,
令,则
令,解得
令,解得
故函数在内单调递减,在内单调递增
因此,则函数在上单调递增
且,又,不妨设,则有;
要证,只需证明,由的单调递增,只需证明,
即:,即证明,其中.
设,则
故在上恒成立,则在上单调递增
,故在上单调递增
从而,即有在上恒成立,即有,
从而有,证毕.
科目:高中数学 来源: 题型:
【题目】如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求证:平面DAF⊥平面CBF;
(Ⅱ)当AD=1时,求直线FB与平面DFC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右顶点分别为,,圆上有一动点,在轴上方,点,直线交椭圆于点,连接,.
(1)若,求的面积;
(2)设直线,的斜率存在且分别为,,若,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,是圆上的一个动点,为圆心,线段的垂直平分线与直线的交点为.
(1)求点的轨迹的方程;
(2)设与轴的正半轴交于点,直线与交于两点(不经过点),且,证明:直线经过定点,并写出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是椭圆上的点,是焦点,离心率.
(1)求椭圆的标准方程;
(2)设是椭圆上的两点,且,问线段的垂直平分线是否过定点?若过定点,求出此定点的坐标,若不过定点,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)
今年十一黄金周,记者通过随机询问某景区110名游客对景区的服务是否满意,得到如下的列联表:
性别与对景区的服务是否满意 单位:名
男 | 女 | 总计 | |
满意 | 50 | 30 | 80 |
不满意 | 10 | 20 | 30 |
总计 | 60 | 50 | 110 |
(1)从这50名女游客中按对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名?
(2)从(1)中的5名女游客样本中随机选取两名作深度访谈,求选到满意与不满意的女游客各一名的概率;
(3)根据以上列联表,问有多大把握认为“游客性别与对景区的服务满意”有关
注:
临界值表:
P() | 0.05 | 0.025 | 0.010 | 0.005 |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax+lnx(a∈R),g(x)=x2emx(m∈R,e为自然对数的底数).
(1)讨论函数f(x)的单调性及最值;
(2)若a>0,且对x1,x2∈[0,2],f(x1+1)≥g(x2)+a﹣1恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com