分析 由题意,以-x代替x,代入f(x)+g(x)=2x得到一个关于f(-x)和g(-x)方程,利用奇(偶)函数的定义把此方程转化为关于f(x)和g(x)另外一个方程,再联立已知方程用消元法求出g(x),利用基本不等式,即可求出函数g(x)的最小值.
解答 解:由题意知,f(x)+g(x)=2x ①,
令以-x代替x,代入得,f(-x)+g(-x)=2-x ②,
∵函数f(x),g(x)分别是R上的奇函数,偶函数,
∴f(-x)=-f(x),g(x)=g(-x)代入②得,
-f(x)+g(x)=2-x;③,
联立①③消去f(x),解得g(x)=$\frac{1}{2}$(2x+2-x),
∴g(x)=$\frac{1}{2}$(2x+2-x)≥1
故答案为:1.
点评 本题考查了用函数奇偶性来求函数的解析式,主要利用定义列出另外一个方程,利用方程思想求出函数的解析式.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | A?B | B. | B?A | C. | A∩B=Φ | D. | 以上都不正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 关于点($\frac{5π}{12}$,0)对称 | B. | 关于点($\frac{π}{2}$,0)对称 | ||
C. | 关于直线x=$\frac{5π}{12}$对称 | D. | 关于直线x=$\frac{π}{12}$对称 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com