精英家教网 > 高中数学 > 题目详情

【题目】给出下列命题中

非零向量满足,则的夹角为

0的夹角为锐角的充要条件;

必定是直角三角形;

④△ABC的外接圆的圆心为O,半径为1,若,,则向量在向量方向上的投影为.

以上命题正确的是 __________ (注:把你认为正确的命题的序号都填上)

【答案】③④

【解析】对于 由向满足,由向量减法的三角形法则,知向量 组成一个等边三角形,向量 夹角为,又由向量加法得平行四边形法则,以 为邻边的平行四边形为菱形,所以的夹角为,故① 正 确;

对于②,当时,不成立;

对于③由

所以,即所以是直角三角形;

对于④由题目信息可作出如右图所示,三角形AOC为等边三角形,所以∠ACB=,且BC为直径,所以∠ABC=

在直角三角形ABCBC=2,AC=1,所以AB=

则向量在向量方向上的投影=.

故④正确.

综上可知命题①③④正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[ ]表示不超过 的最大整数.若 S1=[ ]+[ ]+[ ]=3,
S2=[ ]+[ ]+[ ]+[ ]+[ ]=10,
S3=[ ]+[ ]+[ ]+[ ]+[ ]+[ ]+[ ]=21,
…,
则Sn=(
A.n(n+2)
B.n(n+3)
C.(n+1)2﹣1
D.n(2n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x),若在定义域内存在x0 , 使得f(﹣x0)=﹣f(x0)成立,则称x0为函数f(x)的局部对称点.
(1)若a∈R,a≠0,证明:函数f(x)=ax2+x﹣a必有局部对称点;
(2)若函数f(x)=2x+b在区间[﹣1,1]内有局部对称点,求实数b的取值范围;
(3)若函数f(x)=4x﹣m2x+1+m2﹣3在R上有局部对称点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三角形ABC的边长为2,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,.

(1)当时,求的大小;

(2)求的面积S的最小值及使得S取最小值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2ax+3在(﹣∞,1]上是减函数,当x∈[a+1,1]时,f(x)的最大值与最小值之差为g(a),则g(a)的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,M是棱PD的中点,且PA=AB=AC=2,BC=2

(1)求证:CD⊥平面PAC;
(2)如果如果N是棱AB上一点,且直线CN与平面MAB所成角的正弦值为 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电影院共有1000个座位,票价不分等次,根据电影院的经营经验,当每张票价不超过10元时,票可全部售出;当票价高于10元时,每提高1元,将有30张票不能售出.为了获得更好的收益,需要给电影院一个合适的票价,基本条件是:①为了方便找零和算账,票价定为1元的整数倍;②电影院放映一场电影的成本是5750元,票房收入必须高于成本.用x(元)表示每张票价,用y(元)表示该电影放映一场的纯收入(除去成本后的收入). (Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)票价定为多少时,电影放映一场的纯收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形 中, , 平分,

, 的面积为 为锐角.

(Ⅰ)求

(Ⅱ)求 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】同时满足两个条件:(1)定义域内是减函数;(2)定义域内是奇函数的函数是(
A.f(x)=﹣x|x|
B.
C.f(x)=tanx
D.

查看答案和解析>>

同步练习册答案