精英家教网 > 高中数学 > 题目详情
如图,设平面α∩平面β=EF,AB⊥α,CD⊥α,垂足分别为B,D,如果再增加一个条件,就可以推出BD⊥EF.现有:①AC⊥β;②AC∥EF;③AC与CD在β内的射影
在同一条直线上.那么上述三个条件中能成为增加条件的个数是(  )
A、0个B、1个C、2个D、3个
考点:空间中直线与直线之间的位置关系
专题:
分析:利用空间中线线、线面、面面间的位置关系求解.
解答: 解:①因为AC⊥β,且EF?β,所以AC⊥EF.
又AB⊥α,且EF?α,所以EF⊥AB.
因为AC∩AB=A,AC?平面ACBD,AB?平面ACBD,所以EF⊥平面ACBD,
因为BD?平面ACBD,所以BD⊥EF.
所以①可以成为增加的条件.
②若AC∥EF,则AC∥平面α,
所以BD∥AC,所以BD∥EF.
所以②不可以成为增加的条件.
AC与α,β所成的角相等,AC与EF 不一定,可以是相交、可以是平行、也可能垂直,
所以EF与平面ACDB不垂直,所以就推不出EF与BD垂直.所以②不可以成为增加的条件.
③AC与CD在β内的射影在同一条直线上
因为CD⊥α且EF?α所以EF⊥CD.
所以EF与CD在β内的射影垂直,
AC与CD在β内的射影在同一条直线上
所以EF⊥AC
因为AC∩CD=C,AC?平面ACBD,CD?平面ACBD,所以EF⊥平面ACBD,
因为BD?平面ACBD所以BD⊥EF.
所以③可以成为增加的条件.
故选:C.
点评:本题考查能成为增加条件的命题个数的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(x3+2x2+3x+t)e-x,t∈R.
(1)若函数y=f(x)在区间[-1,2]上为减函数,求t的取值范围.
(2)若存在实数t∈[0,2],使对任意的x∈[-5,m],不等式f(x)≤x恒成立,求整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系下,点A,B分别为x轴和y轴上的两个动点,满足|AB|=10,点M为线段AB的中点,已知点P(10,0),则
1
2
|PM|+|AM|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
x
+lnx-1(a>0).
(1)当a=1时,求函数f(x)的单调区间;
(2)求f(x)在x∈[
1
e
,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠A=60°,∠A的平分线交BC于D,若AB=4,且
AD
=
1
4
AC
+
λ
AB
(λ∈R),则AD的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex
a
-
a
ex
,(a∈R且a>0).
(1)判断函数f(x)的单调性,并证明;
(2)若函数f(x)的定义域为(-2,2)时,求使f(1-m)-f(m2-1)<0成立的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,a1=1,(cosα+sinα)an+1=sinα•Sn+2cosα-sinα,(n∈N*),α∈(0,π),若对任意n∈N*,an+1>an>0恒成立,则α的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x+log2x-3在区间(1,2)内的零点个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx-
π
6
)(ω>0)在(0,
3
)上单调递增,则ω的最大值为(  )
A、
1
2
B、
3
4
C、1
D、
3
2

查看答案和解析>>

同步练习册答案