精英家教网 > 高中数学 > 题目详情

【题目】圆锥的轴截面SAB是边长为4的正三角形(S为顶点),O为底面中心,M为SO中点,动点P在圆锥底面内(包括圆周),若AM⊥MP,则点P形成的轨迹长度为(
A.
B.
C.
D.

【答案】D
【解析】解:过M作MP3⊥AM交AB于P3 , 过P3作P1P2⊥AB交圆锥底面圆周为P1 , P2
则P1P2⊥平面AMP3 , ∴AM⊥P2P1 , 即P点轨迹为线段P1P2
∵△SAB是边长为4的等边三角形,∴AO=2,SO=2 ,∴OM= =
∵∠AMP3=90°,∴OM2=AOOP3 , 解得OP3=
∴P1P2=2 =
故选:D.

【考点精析】根据题目的已知条件,利用旋转体(圆柱、圆锥、圆台)的相关知识可以得到问题的答案,需要掌握常见的旋转体有:圆柱、圆锥、圆台、球.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校从参加高三期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及样本频率分布表如下:

分组

频数

频率

[40,50)

2

0.04

[50,60)

3

0.06

[60,70)

14

0.28

[70,80)

15

[80,90)

0.24

[90,100]

4

0.08

合计


(1)请把给出的样本频率分布表中的空格都填上;
(2)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[40,50)中的某一位同学,已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于x的不等式ax2﹣|x+1|+3a≥0的解集为(﹣∞,+∞),则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式组 所表示的平面区域为Dn , 记Dn内的格点(格点即横坐标和纵坐标皆为整数的点)的个数为f(n)(n∈N*).
(1)求f(1)、f(2)的值及f(n)的表达式;
(2)设bn=2nf(n),Sn为{bn}的前n项和,求Sn
(3)记 ,若对于一切正整数n,总有Tn≤m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解不等式:0≤x2﹣x﹣2≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求证:

(1)直线DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知n∈N* , 设Sn是单调递减的等比数列{an}的前n项和,a1= 且S2+a2 , S4+a4 , S3+a3成等差数列.
(1)求数列{an}的通项公式;
(2)记数列{nan}的前n项和为Tn , 求证:对于任意正整数n,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】虽然吸烟有害健康,但是由于历史以及社会的原因,吸烟也是部分公民交际的重要媒介.世界卫生组织1987年11月建议把每年的4月7日定为世界无烟日,且从1989年开始,世界无烟日改为每年的5月31日.某报社记者专门对吸烟的市民做了戒烟方面的调查,经抽样只有的烟民表示愿意戒烟,将频率视为概率.

(1)从该市吸烟的市民中随机抽取3位,求至少有一位烟民愿意戒烟的概率;

(2)从该市吸烟的市民中随机抽取4位, 表示愿意戒烟的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:函数f(x)= (a>0,且a≠1)在R上为单调递减函数,命题q:x∈[0, ],x2﹣a≤0恒成立.
(1)求命题q真时a的取值范围;
(2)若命题p∧q为假,p∨q为真,求a的取值范围.

查看答案和解析>>

同步练习册答案