精英家教网 > 高中数学 > 题目详情
12.已知sinα=$\frac{1}{2}$,cosα=$\frac{\sqrt{3}}{2}$,求角α的终边与以原点为圆心,4为半径圆的交点坐标.

分析 由题意可得,可取α=$\frac{π}{6}$,从而求得角α的终边与以原点为圆心,4为半径圆的交点坐标.

解答 解:∵sinα=$\frac{1}{2}$,cosα=$\frac{\sqrt{3}}{2}$,故可取α=$\frac{π}{6}$,
故角α的终边与以原点为圆心,4为半径圆的交点坐标为(4cosα,4sinα),
即(2,2$\sqrt{3}$).

点评 本题主要考查任意角的三角函数的定义,特殊角的三角函数的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设函数y=f(x)是偶函数,f′(x)是f(x)的导函数,若f′(x)>f(x),则下列不等式(e为自然对数的底数)①e2f(2)<ef(1)<f(0);②e-1f(1)<f(0)<e2f(2);③e2f(2)<f(0)<e-1f(1)成立的个数有(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求y=sin2(x+$\frac{1}{x}$)的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=sinx与y=$\frac{1}{2}$x的图象在(-$\frac{π}{2}$,$\frac{π}{2}$)上的交点有1个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设U={1,2,3,4,5,6,7},A={1,4,5},B={3,5,7},求(∁UA)∩B,(∁UB)∪A,(∁UB)∩(∁UA),∁U(A∪B)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数的定义域:
(1)y=$\sqrt{sinxtanx}$;
(2)y=1g(sin2x)+$\sqrt{9-{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求证:方程x3+3x-1=0在区间(0,1)上有实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.分别指出下面各命题的形式及构成它的简单命题,并指出复合命题的真假.
(1)8或6是30的约数;
(2)12能被2和3整除.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{3x+4y≥8}\end{array}\right.$,则z=x2+y2-2x+1的最小值是1.

查看答案和解析>>

同步练习册答案