【题目】如图,在三棱柱ABC-A1B1C1中,△ABC和△AA1C均是边长为2的等边三角形,点O为AC中点,平面AA1C1C⊥平面ABC.
(1)证明:A1O⊥平面ABC;
(2)求直线AB与平面A1BC1所成角的正弦值.
【答案】(1)见证明;(2)
【解析】
(1)由AA1=A1C,且O为AC的中点,得A1O⊥AC,根据面面垂直的性质定理,即可证得A1O⊥平面ABC;
(2)以O为原点,OB,OC,OA1为x,y,z轴,建立空间直角坐标系,求得平面A1BC1的一个法向量,利用向量的夹角公式,即可求解.
(1)证明:∵AA1=A1C,且O为AC的中点,
∴A1O⊥AC,
又∵平面AA1C1C⊥平面ABC,且交线为AC,又A1O平面AA1C1C,
∴A1O⊥平面ABC;
(2)如图,以O为原点,OB,OC,OA1为x,y,z轴,建立空间直角坐标系.
由已知可得O(0,0,0)A(0,-1,0),
,
平面A1BC1的法向量为,
则有,
所以的一组解为,
设直线AB与平面A1BC1所成角为,
则
又∵,
所以直线AB与平面A1BC1所成角的正弦值:.
科目:高中数学 来源: 题型:
【题目】有下列命题:①边长为1的正四面体的内切球半径为;
②正方体的内切球、棱切球(正方体的每条棱都与球相切)、外接球的半径之比为1:;
③棱长为1的正方体ABCD-A1B1C1D1的内切球被平面A1BD截得的截面面积为.
其中正确命题的序号是______(请填所有正确命题的序号);
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法错误的是( )
A. 若“”为假命题,则p,q均为假命题
B. “ ”是“”的充分不必要条件
C. “”的必要不充分条件是“”
D. 若命题p:,,则命题:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,且.
(1)求实数的值,并指出函数的定义域;
(2)将函数图象上的所有点向右平行移动1个单位得到函数的图象,写出函数的表达式;
(3)对于(2)中的,关于的函数在上的最小值为2,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018衡水金卷(二)】如图,矩形中, 且, 交于点.
(I)若点的轨迹是曲线的一部分,曲线关于轴、轴、原点都对称,求曲线的轨迹方程;
(II)过点作曲线的两条互相垂直的弦,四边形的面积为,探究是否为定值?若是,求出此定值,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. 、是椭圆的右顶点与上顶点,直线与椭圆相交于、两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)当四边形面积取最大值时,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com