精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱ABC-A1B1C1中,△ABC和△AA1C均是边长为2的等边三角形,点OAC中点,平面AA1C1C⊥平面ABC

(1)证明:A1O⊥平面ABC

(2)求直线AB与平面A1BC1所成角的正弦值.

【答案】(1)见证明;(2)

【解析】

(1)AA1=A1C,且OAC的中点,得A1OAC根据面面垂直的性质定理,即可证得A1O⊥平面ABC

(2)以O为原点,OBOCOA1xyz轴,建立空间直角坐标系,求得平面A1BC1的一个法向量,利用向量的夹角公式,即可求解.

(1)证明:∵AA1=A1C,且OAC的中点,

A1OAC

又∵平面AA1C1C⊥平面ABC,且交线为AC,又A1O平面AA1C1C

A1O⊥平面ABC

(2)如图,以O为原点,OBOCOA1xyz轴,建立空间直角坐标系.

由已知可得O(0,0,0)A(0,-1,0)

平面A1BC1的法向量为

则有

所以的一组解为

设直线AB与平面A1BC1所成角为

又∵

所以直线AB与平面A1BC1所成角的正弦值:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,若在曲线上存在点使得,则实数的取值范围为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列命题:①边长为1的正四面体的内切球半径为

②正方体的内切球、棱切球(正方体的每条棱都与球相切)、外接球的半径之比为1:

③棱长为1的正方体ABCD-A1B1C1D1的内切球被平面A1BD截得的截面面积为

其中正确命题的序号是______(请填所有正确命题的序号);

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,正确的是(

A.中,

B.在锐角中,不等式恒成立

C.中,若,则必是等腰直角三角形

D.中,若,则必是等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法错误的是( )

A. 若“”为假命题,则pq均为假命题

B. ”是“”的充分不必要条件

C. ”的必要不充分条件是“

D. 若命题p,则命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且.

1)求实数的值,并指出函数的定义域;

2)将函数图象上的所有点向右平行移动1个单位得到函数的图象,写出函数的表达式;

3)对于(2)中的,关于的函数上的最小值为2,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对于曲线上任意点处的切线,总存在上处的切线,使得,则实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018衡水金卷(二)如图,矩形中, 于点

I)若点的轨迹是曲线的一部分,曲线关于轴、轴、原点都对称,求曲线的轨迹方程;

II)过点作曲线的两条互相垂直的弦,四边形的面积为,探究是否为定值?若是,求出此定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. 是椭圆的右顶点与上顶点,直线与椭圆相交于两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)当四边形面积取最大值时,求的值.

查看答案和解析>>

同步练习册答案