精英家教网 > 高中数学 > 题目详情
(本小题满分12分) 求满足下列条件的椭圆的标准方程.
(1)焦点在坐标轴上,且经过两点
(2)经过点(2,-3)且与椭圆具有共同的焦点.
(1) 。(2)
本题主要考查利用椭圆的定义与椭圆的简单性质求椭圆的标准方程,解决此类问题的步骤是:首先确定标准方程的形式(焦点在x轴还是再y轴上),再根据条件求出 a,b,然后写出椭圆的方程,此题属于基础题.
(1)当所求椭圆的焦点在轴上时,设它的标准方程为,依题意应有代入两个点的坐标得到求解。
(2)椭圆的焦点坐标为,从而可设所求椭圆的方程为,然后经过点,得方程的求解。
解法1:①当所求椭圆的焦点在轴上时,设它的标准方程为,依题意应有,,解得,因为从而方程组无解;
②当所求椭圆的焦点在轴上时,设它的标准方程为,依题意应有,解得,所以所求椭圆的标准方程为
故所求椭圆的标准方程为
解法2:设所求椭圆的标准方程为,依题意得,解得,从而所求椭圆的标准方程为
(2) ∵椭圆的焦点坐标为,从而可设所求椭圆的方程为,又∵经过点,从而得,解得(舍去),
故所求椭圆的标准方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,椭圆的离心率为,直线所围成的矩形ABCD的面积为8.
 
(Ⅰ)求椭圆M的标准方程;
(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆的两个焦点,点M在椭圆上,若△是直角三角形,则△的面积等于(  )
A.48/5B.36/5C.16D.48/5或16

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 已知椭圆E:=1(a>b>o)的离心率e=,且经过点(,1),O为坐标原点。

(Ⅰ)求椭圆E的标准方程;
 (Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)
如图,椭圆C:=1(a>b>0)的焦点F1,F2和短轴的一个端点A构成等边三角形,
点()在椭圆C上,直线l为椭圆C的左准线.
(1) 求椭圆C的方程;
(2) 点P是椭圆C上的动点,PQ ⊥l,垂足为Q.
是否存在点P,使得△F1PQ为等腰三角形?
若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的长轴长是短轴长的两倍,且过点
(1)求椭圆的标准方程;
(2)若直线与椭圆交于不同的两点,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的左右焦点分别为,P为C的右支上一点,且=,△的面积等于(   )
A.24B.36C.48D.96

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点为F1,F2(0,),且离心率
(I)求椭圆的方程;
(II)直线l(与坐标轴不平行)与椭圆交于不同的两点A、B,且线段AB中点的横坐标
,求直线l的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)以下是有关椭圆的两个问题:
问题1:已知椭圆,定点A(1, 1),F是右焦点,P是椭圆上动点,则有最小值;
问题2:已知椭圆,定点A (2, 1),F是右焦点,
P是椭圆上动点,有最小值;

(Ⅰ)求问题1中的最小值,并求此时P点坐标;
(Ⅱ)试类比问题1,猜想问题2中的值,并谈谈你作此猜想的依据.

查看答案和解析>>

同步练习册答案