精英家教网 > 高中数学 > 题目详情

【题目】我市在经济高速发展的同时,根据中央文明委办公室2017年度颁布的《全国文明城市(地级以上)测评体系》标准,特制了创建全国文明城市三年行动计划(2018-2020年).在城市环境卫生的治理方面,经过两年的治理,市容市貌焕然一新,为了调查市民对城区环境卫生的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如图所示的频率分布直方图,其中.

1)求被调查市民满意程度的平均数与中位数(精确到小数点后三位);

2)若按照分层抽样的方式从中随机抽取6人,再从这6人中随机抽取2人,求至少有1人的分数在的概率.

【答案】1)平均数为:,中位数:.(2

【解析】

1)先根据频率分布直方图求出,再利用频率分布直方图求平均值与中位数即可;

2)列出抽取2人的所有情况,找到满足至少有1人的分数在的事件个数,根据古典概型求解.

1)由频率分布直方图得:

解得

平均数为:

中位数:

2)依题意可得:两段频率比为

按照分层抽样的方式从中随机抽取6人,

分数在中抽取2人,记为

分数在中抽取4人,记为

从这6人中随机抽取2人的所有情况为:

15个基本事件,

其中,至少有1人的分数在包含的基本事件有9个,

至少有1人的分数在的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】红队队员甲、乙、丙与蓝队队员进行围棋比赛,甲对,乙对,丙对各一盘.已知甲胜、乙胜、丙胜的概率分别为0.60.50.5,假设各盘比赛结果相互独立,则红队至少两名队员获胜的概率是____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,点到两点的距离之和为4,设点的轨迹为,直线交于两点。

(Ⅰ)写出的方程;

(Ⅱ)若,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB分别是椭圆的左、右顶点,P为椭圆C的下顶点,F为其右焦点M是椭圆C上异于AB的任一动点,过点A作直线以线段AF为直径的圆交直线AM于点AN,连接FN交直线l于点G的坐标为,且,椭圆C的离心率为

求椭圆C的方程;

试问在x轴上是否存在一个定点T,使得直线MH必过该定点T?若存在,求出点T的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数的图像在处的切线垂直于直线,求实数的值及直线的方程;

(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

0

0

2

0

0

(1)请将上表数据补充完整,填写在相应位置,并求出函数的解析式;

(2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数的图象,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过两点,且圆心在直线上.

(1)求圆的方程;

(2)已知过点的直线与圆相交截得的弦长为,求直线的方程;

(3)已知点,在平面内是否存在异于点的定点,对于圆上的任意动点,都有为定值?若存在求出定点的坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .若gx)存在2个零点,则a的取值范围是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

同步练习册答案