【题目】我市在经济高速发展的同时,根据中央文明委办公室2017年度颁布的《全国文明城市(地级以上)测评体系》标准,特制了创建全国文明城市三年行动计划(2018-2020年).在城市环境卫生的治理方面,经过两年的治理,市容市貌焕然一新,为了调查市民对城区环境卫生的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如图所示的频率分布直方图,其中.
(1)求被调查市民满意程度的平均数与中位数(精确到小数点后三位);
(2)若按照分层抽样的方式从中随机抽取6人,再从这6人中随机抽取2人,求至少有1人的分数在的概率.
【答案】(1)平均数为:,中位数:.(2)
【解析】
(1)先根据频率分布直方图求出,再利用频率分布直方图求平均值与中位数即可;
(2)列出抽取2人的所有情况,找到满足至少有1人的分数在的事件个数,根据古典概型求解.
(1)由频率分布直方图得:
,
,
又,
解得,
平均数为:
中位数:
(2)依题意可得:两段频率比为,
按照分层抽样的方式从中随机抽取6人,
分数在中抽取2人,记为,,
分数在中抽取4人,记为,,,
从这6人中随机抽取2人的所有情况为:
,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,
共15个基本事件,
其中,至少有1人的分数在包含的基本事件有9个,
至少有1人的分数在的概率
科目:高中数学 来源: 题型:
【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】红队队员甲、乙、丙与蓝队队员,,进行围棋比赛,甲对,乙对,丙对各一盘.已知甲胜、乙胜、丙胜的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立,则红队至少两名队员获胜的概率是____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A、B分别是椭圆的左、右顶点,P为椭圆C的下顶点,F为其右焦点点M是椭圆C上异于A、B的任一动点,过点A作直线轴以线段AF为直径的圆交直线AM于点A、N,连接FN交直线l于点点G的坐标为,且,椭圆C的离心率为.
求椭圆C的方程;
试问在x轴上是否存在一个定点T,使得直线MH必过该定点T?若存在,求出点T的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)请将上表数据补充完整,填写在相应位置,并求出函数的解析式;
(2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数的图象,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆经过两点,且圆心在直线上.
(1)求圆的方程;
(2)已知过点的直线与圆相交截得的弦长为,求直线的方程;
(3)已知点,在平面内是否存在异于点的定点,对于圆上的任意动点,都有为定值?若存在求出定点的坐标,若不存在说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com