精英家教网 > 高中数学 > 题目详情
12.函数y=4x-2x+1+1(x<0)的值域是(0,1).

分析 y=f(x)=(2x2-2•2x+1=(2x-1)2,由于x<0,可得0<2x<1,利用二次函数的单调性即可得出.

解答 解:y=f(x)=(2x2-2•2x+1=(2x-1)2
∵x<0,∴0<2x<1,
∴f(0)<f(x)<f(1),
∴0<f(x)<1.
∴函数f(x)的值域为(0,1).
故答案为:(0,1).

点评 本题考查了指数函数与二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Asin(ωx+φ).
(1)若该函数的部分图象如图所示,其中A>0,ω>0,0<φ<π,则该函数f(x)的解析式为f(x)=2sin(2x+$\frac{2π}{3}$)
(2)若A=2,ω=2,φ=0,则该函数图象在区间[-$\frac{π}{4}$,$\frac{3π}{4}$]上与直线y=-2围成封闭图形面积为π.
(3)若A=2,ω>2,φ=$\frac{π}{3}$,且该函数图象整体在区间[0,$\frac{π}{2}$]上有且只有4条对称轴,则ω取值集合为6≤ω<8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1(a>2)的离心率为$\frac{\sqrt{3}}{3}$,斜率为k的直线l过点E(0,1)且与椭圆交于C,D两点.
(1)求椭圆的方程;
(2)若直线l与x轴相交于点G,且$\overrightarrow{GC}$=$\overrightarrow{DE}$,求k的值;
(3)设点A为椭圆的下顶点,kAC,kAD分别为直线AC,AD的斜率,证明:对任意的k,恒有kAC•kAD=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求函数y=-tan3x+4tanx+1,x∈[-$\frac{π}{4}$,$\frac{π}{4}$]值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合M={y|y=3x},M={y|y=x${\;}^{\frac{2}{3}}$},则M∩N=(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.确定下列各三角函数值的符号:
(1)sin145°cos(-210°);
(2)sin1cos2tan3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\sqrt{(acosx-1)^{2}+si{n}^{2}x}$
(1)当a=2时,求f(x)的值域;
(2)当且仅当x=2kπ,k∈Z时,f(x)取最小值,求正数a的取值范围;
(3)是否存在正数a,使得对于定义域内的任意x,$\frac{f(x)}{a-cosx}$为定值?若存在,求a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,直线l的直角坐标方程为x-y+4=0,曲线C的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}cosα\\ y=sinα\end{array}\right.(α$为参数)
(Ⅰ)已知在极坐标系(与直角坐标系xOy取相同长度单位,且以原点为极点,以x轴正半轴为极轴)中,点P的极坐标为($\sqrt{2}$,$\frac{π}{4}$),求点P关于直线l的对称点P0的直角坐标;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.($\sqrt{8}$)${\;}^{-\frac{2}{3}}$-(3π)0+$\sqrt{(-2)^{2}}$=$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案