(12分)如图,已知在直四棱柱中,
,,.
(1)求证:平面;
(2)设是上一点,试确定的位置,使平面,并说明理由.
见解析。
【解析】
试题分析:(1)因为此几何是一个直棱柱,所以.根据线面垂直的判定定理,所以只需再证即可.
(2)从图上分析可确定E应为DC的中点,然后证明:四边形A1D1EB是平行四边形,即可得到D1E//A1B,
根据线面平行的判定定理,问题得证.
(1)设是的中点,连结,则四边形为正方形,
.故,,,,即.又,平面,
(2)证明:DC的中点即为E点,连D1E,BE
所以四边形ABED是平行四边形所以ADBE,又ADA1D1A1D1
所以四边形A1D1EB是平行四边形 D1E//A1B ,所以D1E//平面A1BD.
考点:线线,线面,面面平行与垂直的判定与性质.
点评:解本小题的关键是掌握线线,线面,面面垂直的判定与性质,然后从图上分析需要证明的条件,要时刻想着往判定定理上进行转化.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
((本小题满分12分)
如图,已知在直四棱柱中,
,,.
(1)求证:平面;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com