精英家教网 > 高中数学 > 题目详情
已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,点M是椭圆上的任意一点,且|PF1|+|PF2|=4,椭圆的离心率e=
1
2

(Ⅰ)求椭圆E的标准方程;
(Ⅱ)过椭圆E的左焦点F1作直线l交椭圆于P、Q两点,点A为椭圆右顶点,能否存在这样的直线,使
AP
AQ
=3
,若存在,求出直线方程,若不存在,说明理由.
(I)由题意可得
|MF1|+|MF2|=4=2a
e=
c
a
=
1
2
a2=b2+c2
,解得
a=2,c=1
b2=3

故椭圆的方程为
x2
4
+
y2
3
=1

(II)若直线l⊥x轴,则P(-1,
3
2
)
Q(-1,-
3
2
)

又A(2,0),∴
AP
=(-3,
3
2
)
AQ
=(-3,-
3
2
)

AP
AQ
=9-
9
4
=
27
4
≠3
,此时不满足条件,直线l不存在.
当直线l的斜率存在时,设直线ld的方程为:y=k(x+1),P(x1,y1),Q(x2,y2).
联立
y=k(x+1)
x2
4
+
y2
3
=1
,消去y得到(3+4k2)x2+8k2x+4k2-12=0,
x1+x2=
-8k2
3+4k2
x1x2=
4k2-12
3+4k2

AP
=(x1-2,y1)
AQ
=(x2-2,y2)

AP
AQ
=(x1-2)(x2-2)+y1y2
=(x1-2)(x2-2)+k(x1+1)•k(x2+1)=3.
(1+k2)x1x2+(k2-2)(x1+x2)+k2+1=0
(1+k2)(4k2-12)
3+4k2
-
8k2(k2-2)
3+4k2
+k2+1=0

解得k=±
15
5

∴满足条件的直线l存在,其方程为y=±
15
5
(x+1)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0),焦点为F1、F2,双曲线G:x2-y2=m(m>0)的顶点是该椭圆的焦点,设P是双曲线G上异于顶点的任一点,直线PF1、PF2与椭圆的交点分别为A、B和C、D,已知三角形ABF2的周长等于8
2
,椭圆四个顶点组成的菱形的面积为8
2

(1)求椭圆E与双曲线G的方程;
(2)设直线PF1、PF2的斜率分别为k1和k2,探求k1和k2的关系;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,试求出λ的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0),以F1(-c,0)为圆心,以a-c为半径作圆F1,过点B2(0,b)作圆F1的两条切线,设切点为M、N.
(1)若过两个切点M、N的直线恰好经过点B1(0,-b)时,求此椭圆的离心率;
(2)若直线MN的斜率为-1,且原点到直线MN的距离为4(
2
-1),求此时的椭圆方程;
(3)是否存在椭圆E,使得直线MN的斜率k在区间(-
2
2
,-
3
3
)内取值?若存在,求出椭圆E的离心率e的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
3
=1
(a
3
)的离心率e=
1
2
.直线x=t(t>0)与曲线 E交于不同的两点M,N,以线段MN 为直径作圆 C,圆心为 C.
 (1)求椭圆E的方程;
 (2)若圆C与y轴相交于不同的两点A,B,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的一个交点为F1(-
3
,0)
,而且过点H(
3
1
2
)

(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+y2=1
(a>1)的离心率e=
3
2
,直线x=2t(t>0)与椭圆E交于不同的两点M、N,以线段MN为直径作圆C,圆心为C
(Ⅰ)求椭圆E的方程;
(Ⅱ)当圆C与y轴相切的时候,求t的值;
(Ⅲ)若O为坐标原点,求△OMN面积的最大值.

查看答案和解析>>

同步练习册答案