精英家教网 > 高中数学 > 题目详情
函数f(x)是定义域为R的偶函数,且对任意的x∈R,均有f(x+2)=f(x)成立.当x∈[0,1]时,f(x)=loga(2-x)(a>1).
(1)当x∈[2k-1,2k+1](k∈Z)时,求f(x)的表达式;
(2)若f(x)的最大值为,解关于x的不等式
【答案】分析:(1)由f(x+2)=f(x)可得2是f(x)周期,当x∈[2k-1,2k]时,x-2k∈[-1,0),代入可得f(x)=loga[2+(x-2k)];当x∈[2k,2k+1](k∈Z)时,x-2k∈[0,1],代入可得f(x)=f(x-2k)=loga[2-(x-2k)].
(2)f(x)的最大值为,求出a=4,再求x∈[-1,1时的解集,利用周期为2,可得不等式的解集..
解答:解:(1)当x∈[-1,0)时,f(x)=f(-x)=loga[2-(-x)]=loga(2+x).
当x∈[2k-1,2k)(k∈Z)时,x-2k∈[-1,0),f(x)=f(x-2k)=loga[2+(x-2k)].
当x∈[2k,2k+1](k∈Z)时,x-2k∈[0,1],f(x)=f(x-2k)=loga[2-(x-2k)].
故当x∈[2k-1,2k+1](k∈Z)时,f(x)的表达式为
(2)∵f(x)是以2为周期的周期函数,且为偶函数,∴f(x)的最大值就是当x∈[0,1]时,f(x)的最大值.
∵a>1,∴f(x)=loga(2-x)在[0,1]上是减函数,∴,∴a=4.
当x∈[-1,1]时,由

∵f(x)是以2为周期的周期函数,
的解集为
点评:本题主要考查周期函数,解题的关键是正确利用周期,及已知定义域上的解析式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义域为R的偶函数,且f(x+1)=-f(x),若f(x)在[-1,0]上是减函数,那么f(x)在[1,3]上是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义域为R的奇函数,且它的图象关于直线x=1对称.
(1)求f(0)的值.
(2)证明函数f(x)是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义域为(-1,1)上的奇函数也是减函数
(1)若x∈(-1,0)时,f(x)=-x+1,求f(x);
(2)若f(1-a)<f(a2-1),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义域为R的可导函数,且满足(x2+3x-4)f′(x)<0,给出下列说法:
①函数f(x)的单调递减区间是(-∞,-4)∪(1,+∞);
②f(x)有2个极值点;
③f(0)+f(2)>f(-5)+f(-3);
④f(x)在(-1,4)上单调递增.
其中不正确的说法是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义域为R,最小正周期是
2
的函数,且当0≤x≤π时,f(x)=sinx,则f(-
15π
4
)
=
 

查看答案和解析>>

同步练习册答案