分析 设出双曲线方程,求出抛物线的准线方程,利用|AB|=4$\sqrt{2}$,即可求得结论.
解答 解:设等轴双曲线C的方程为y2-x2=λ(λ>0)(1)
∵抛物线x2=16y,2p=16,p=8,
∴$\frac{p}{2}$=4.
∴抛物线的准线方程为y=-4.
设等轴双曲线与抛物线的准线y=-4的两个交点A(x,-4),B(-x,-4)(x>0),
则|AB|=|x-(-x)|=2x=4$\sqrt{2}$,
∴x=2$\sqrt{2}$.
将y=-4,x=2$\sqrt{2}$代入(1),得(-4)2-(2$\sqrt{2}$)2=λ,
∴λ=8,
∴等轴双曲线C的方程为y2-x2=8,
故答案为:y2-x2=8.
点评 本题考查抛物线,双曲线的几何性质,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com