精英家教网 > 高中数学 > 题目详情
将函数f(x)=2sinx图象按向量=(,0)平移得函数g(x)的图象,则函数g(x)的单调递增区间是( )
A.[2kπ-,2kπ+](k∈Z)
B.[2kπ-,2kπ+](k∈Z)
C.[2kπ+,2kπ+](k∈Z)
D.[2kπ+,2kπ+](k∈Z)
【答案】分析:直接利用左加右减的原则,求出平移后的函数解析式,然后结合基本函数的单调性求出函数的单调增区间.
解答:解:将函数f(x)=2sinx图象按向量=(,0)平移得函数g(x)=2sin(x-)的图象,
因为2k,k∈Z,
所以x∈[2kπ-,2kπ+](k∈Z).
所以函数的单调增区间为:[2kπ-,2kπ+](k∈Z).
故选A.
点评:本题是基础题,考查三角函数的图象的平移与伸缩变换,注意向量平移的方向,基本函数的单调性,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将函数f(x)=2sin(ωx-
π
3
)(ω>0)的图象向左平移
π
个单位,得到函数y=g(x)的图象,若y=g(x)在[0,
π
4
]上为增函数,则ω的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数f(x)=2sin(2x-θ)-3的图象F按向量
a
=(
π
6
,3)
,平移得到图象F′,若F′的一条对称轴是直线x=
π
4
,则θ的一个可能取值是(  )
A、-
π
6
B、-
π
3
C、
π
2
D、
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数f(x)=2sin(2x+
π
4
)的图象向右平移φ(φ>0)个单位,再将图象上每一点横坐标缩短到原来的
1
2
倍,所得图象关于直线(
π
8
,0)对称,则φ的最小正值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数f(x)=2sin(2x+
π
3
)-3的图形按向量
.
a
=(m,n)平移后得到函数g(x)的图形,满足g(
π
4
-x)=g(
π
4
+x)和g(-x)+g(x)=0,则向量
.
a
的一个可能值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数f(x)=2sin(2x-θ)-3的图象F向右平移
π
6
,再向上平移3个单位,得到图象F′,若F′的一条对称轴方程是x=
π
4
,则θ的一个可能取(  )
A、-
π
6
B、-
π
3
C、
π
2
D、
π
3

查看答案和解析>>

同步练习册答案