精英家教网 > 高中数学 > 题目详情
4.如图,圆柱OO1的底面圆半径为2,ABCD为经过圆柱轴OO1的截面,点P在$\widehat{{A}{B}}$上且$\widehat{{A}{P}}=\frac{1}{3}\widehat{{A}{P}{B}}$,Q为PD上任意一点.
(Ⅰ)求证:AQ⊥PB;
(Ⅱ)若线段PD的长为$2\sqrt{3}$,求圆柱OO1的体积.

分析 (1)由圆柱得到结构特征可知AP⊥BP,AD⊥平面ABP,故AD⊥BP,于是BP⊥平面ADP,从而BP⊥AQ;
(2)由$\widehat{{A}{P}}=\frac{1}{3}\widehat{{A}{P}{B}}$得∠AO1P=60°,于是△AO1P是等边三角形,AP=2,在Rt△ADP中由勾股定理求出圆柱的高AD,代入体积公式.

解答 解:(1)∵AB是⊙O1直径,∴AP⊥BP,
∵AD⊥平面ABP,BP?平面ABP,
∴AD⊥BP,
又∵AD∩AP=A,AD?平面ADP,AP?平面ADP,
∴BP⊥平面ADP,∵AQ?平面ADP,
∴BP⊥AQ.
(2)∵$\widehat{{A}{P}}=\frac{1}{3}\widehat{{A}{P}{B}}$,
∴∠AO1P=60°,又∵O1A=O1P,
∴△AO1P是等边三角形,
∴AP=O1A=2,
∵AD⊥平面ABP,AP?平面ABP
AD⊥AP,∴AD═$\sqrt{D{P}^{2}-A{P}^{2}}$=2$\sqrt{2}$,
∴V${\;}_{圆柱O{O}_{1}}$=πO1A2•AD=8$\sqrt{2}$π.

点评 本题考查了线面垂直的性质与判定,圆柱的体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是奇函数,g(x)是偶函数,若f(-3)+g(3)=2,f(3)+g(-3)=4,则g(3)等于(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,点P(3,4)为圆x2+y2=25的一点,点E,F为y轴上的两点,△PEF是以点P为顶点的等腰三角形,直线PE,PF交圆于D,C两点,直线CD交y轴于点A,则cos∠DAO的值为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将函数y=$\sqrt{3}$sin2x的图象向右平移$\frac{π}{4}$个单位长度,再将所得图象的所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得到的图象所对应的函数解析式为(  )
A.y=$\sqrt{3}$sinxB.y=-$\sqrt{3}$cosxC.y=$\sqrt{3}$sin4xD.y=-$\sqrt{3}$cos4x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=ln($\sqrt{1+4{x}^{2}}$-2x)+3,则f(lg2)+f(lg$\frac{1}{2}$)=(  )
A.0B.-3C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=x2+(lga+2)x+lgb,且f(-1)=-2,又f(x)≥2x对一切x∈R都成立,则a+b=110.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.平面上到点A(-5,0)、B(5,0)距离之和为10的点的轨迹是(  )
A.椭圆B.C.线段D.射线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)={log_a}\frac{2-x}{2+x}$(a>0,且a≠1),且f(-1)=1,
(1)求a的值;
(2)求函数f(x)的定义域;
(3)判断函数f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若$cos(\frac{π}{4}-θ)cos(\frac{π}{4}+θ)=\frac{{\sqrt{2}}}{6}$,则cos2θ=$\frac{{\sqrt{2}}}{3}$.

查看答案和解析>>

同步练习册答案