【题目】已知函数f(x)=sin(2ωx﹣ )(ω>0)的最小正周期为4π,则( )
A.函数f(x)的图象关于点( ,0)对称
B.函数f(x)的图象关于直线x= 对称
C.函数f(x)的图象在( ,π)上单调递减
D.函数f(x)的图象在( ,π)上单调递增
科目:高中数学 来源: 题型:
【题目】在直三棱柱ABC﹣A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分别是A1C1 , BC的中点.
(1)证明:平面AEB⊥平面BB1C1C;
(2)证明:C1F∥平面ABE;
(3)设P是BE的中点,求三棱锥P﹣B1C1F的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的数列{an}的前n项和为Sn , 向量 =(Sn , an+1), =(an+1,4)(n∈N*),且 ∥
(1)求{an}的通项公式
(2)设f(n)= bn=f(2n+4),求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的一段图象如右图所示:
(1)求函数的解析式及其最小正周期;
(2)求使函数取得最大值的自变量的集合及最大值;
(3)求函数在的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲,乙,丙三位学生独立地解同一道题,甲做对的概率为 ,乙,丙做对的概率分别为m,n(m>n),且三位学生是否做对相互独立.记ξ为这三位学生中做对该题的人数,其分布列为:
ξ | 0 | 1 | 2 | 3 |
P | a | b |
(1)求至少有一位学生做对该题的概率;
(2)求m,n的值;
(3)求ξ的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间,,内的频率之比为.
(Ⅰ)求这些产品质量指标值落在区间内的频率;
(Ⅱ)用分层抽样的方法在区间内抽取一个容量为6的样本,将该样本看成一个总体,从中任意
抽取2件产品,求这2件产品都在区间内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的命题个数是( )
①. 如果共面, 也共面,则共面;
②.已知直线a的方向向量与平面,若// ,则直线a// ;
③若共面,则存在唯一实数使,反之也成立;
④.对空间任意点O与不共线的三点A、B、C,若=x+y+z
(其中x、y、z∈R),则P、A、B、C四点共面.
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx+ (a>0).
(1)求函数f(x)在[1,+∞)上的最小值;
(2)若存在三个不同的实数xi(i=1,2,3)满足f(x)=ax.
(i)证明:a∈(0,1),f( )> ;
(ii)求实数a的取值范围及x1x2x3的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log2(x+a).
(Ⅰ)当a=1时,若f(x)+f(x-1)>0成立,求x的取值范围;
(Ⅱ)若定义在R上奇函数g(x)满足g(x+2)=-g(x),且当0≤x≤1时,g(x)=f(x),求g(x)在[-3,-1]上的解析式,并写出g(x)在[-3,3]上的单调区间(不必证明);
(Ⅲ)对于(Ⅱ)中的g(x),若关于x的不等式g()≥g(-)在R上恒成立,求实数t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com