精英家教网 > 高中数学 > 题目详情
函数f(x)=log2(3x+1)的值域为( )
A.(0,+∞)
B.[0,+∞)
C.(1,+∞)
D.[1,+∞)
【答案】分析:函数的定义域为R,结合指数函数性质可知3x>0恒成立,则真数3x+1>1恒成立,再结合对数函数性质即可求得本题值域.
解答:解:根据对数函数的定义可知,真数3x+1>0恒成立,解得x∈R.
因此,该函数的定义域为R,
原函数f(x)=log2(3x+1)是由对数函数y=log2t和t=3x+1复合的复合函数.
由复合函数的单调性定义(同増异减)知道,原函数在定义域R上是单调递增的.
根据指数函数的性质可知,3x>0,所以,3x+1>1,
所以f(x)=log2(3x+1)>log21=0,
故选A.
点评:本题考查了对数复合函数的单调性,复合函数的单调性知识点,高中要求不高,只需同学们掌握好“同増异减“原则即可;本题还考查了同学们对指数函数性质(如:3x>0)的掌握,这是指数函数求定义域和值域时常用知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、设函数f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,则f(x12)+f(x22)+…f(x102)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是减函数,则实数a的范围是(  )
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log 2(x2-x-2)
(1)求f(x)的定义域;
(2)当x∈[3,4]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有三个命题:“①0<
1
2
<1.②函数f(x)=log 
1
2
x是减函数.③当0<a<1时,函数f(x)=logax是减函数”.当它们构成三段论时,其“小前提”是
(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•茂名二模)设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的高调函数.现给出下列命题:
①函数f(x)=log 
1
2
x为(0,+∞)上的高调函数;
②函数f(x)=sinx为R上的高调函数;
③如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的高调函数,那么实数m的取值范围是[2,+∞);
其中正确的命题的个数是(  )

查看答案和解析>>

同步练习册答案