精英家教网 > 高中数学 > 题目详情
已知命题p:“方程x2-ax+a+3=0有解”,q:“
1
4x
+
1
2x
-a>0在[1,+∞)上恒成立”,若p或q为真命题,p且q为假命题,求实数a的取值范围.
考点:复合命题的真假
专题:集合
分析:先求出关于p,q的a的范围,再根据p,q一真一假得到不等式组,解出即可.
解答: 解:∵方程x2-ax+a+3=0有解,
∴△=a2-4(a+3)≥0,
解得:a≤-2或a≥6,
p:a≤-2或a≥6,
t=
1
2x
t2+t>a

∵0<t≤2,
∴q:a≤0,
∵p,q一真一假,
a≤-2或a≥6
a>0
,或
-2<a<6
a≤0

解得:-2<a≤0或a≥6.
点评:本题考查了复合命题的真假的判断,考查了不等式的解法,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题正确的是(  )
A、存在x0∈R,使得x02-1<0的否定是:任意x∈R,均有x02-1>0
B、存在x0∈R,使得ex0≤0的否定是:不存在x0∈R,使得ex0>0
C、若p或q为假命题,则命题p与q必一真一假
D、若x=3,则x2-2x-3=0的否命题是:若x≠3,则x2-2x-3≠0

查看答案和解析>>

科目:高中数学 来源: 题型:

设A,B为两个不相等的集合,条件p:x∉(A∩B),条件q:x∉(A∪B),则p是q的(  )
A、充分不必要条件
B、充要条件
C、必要不充分条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

实数a,b满足a-
1
2
b=1,则4a+2-b的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1+x2
+x-1
1+x2
+x+1
的图象关于
 
对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:ax-3y+1=0与直线l2:2x+(a+1)y+1=0垂直,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=
4+3i
2-i
的虚部为(  )
A、2iB、-2iC、-2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知为虚数单位,则
2
+i2015
1+
2
i
=(  )
A、-
i
3
B、
i
3
C、-i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的周长为12,顶点A、B的坐标分别为(-2,0),(2,0),C为动点.
(1)求动点C的轨迹E的方程;
(2)过原点作两条关于y轴对称的直线(不与坐标轴重合),使它们分别与曲线E交于两点,求四点所对应的四边形的面积的最大值.

查看答案和解析>>

同步练习册答案