精英家教网 > 高中数学 > 题目详情
9.已知三棱锥A-BCD中,平面ABD⊥平面BCD,BC⊥CD,BC=CD=4,AB=AD=2$\sqrt{3}$,则三棱锥A-BCD的外接球的表面积为36π.

分析 利用已知三棱锥A-BCD的特点AB=AC=AD,先确定△ABD的外心O,及外接圆的半径,然后证明O也是三棱锥A-BCD的外接球的球心,即可解答.

解答 解:∵如图取BD的中点E,连接AE,CE.
则AE⊥BD,CE⊥BD.
∵平面ABD⊥平面BCD,
平面ABD∩平面BCD=BD,
∴AE⊥平面BCD,
又∵CE?平面BCD,
∴AE⊥CE.
设△ABD的外接圆的圆心为O,半径为r.
∵AB=AD,
∴圆心O在AE所在的直线上.
∴r2=BE2+OE2=BE2+(r-AE)2
∵在Rt△BCD中,
BD=$\sqrt{{BC}^{2}+{CD}^{2}}$=4$\sqrt{2}$.
∴BE=EC=2$\sqrt{2}$.
∴在Rt△ABE中,AE=$\sqrt{{AB}^{2}-{BE}^{2}}$=2.
∴r2=8+(r-2)2,解得r=3.
∴OE=1.
在Rt△OEC中,OC=$\sqrt{{OE}^{2}+{EC}^{2}}$=3.
∴OA=OB=OC=OD=3.
∴点O是三棱锥A-BCD的外接球的球心,且球半径R=3.
∴球的表面积S=4πR2=36π.
故答案为:36π

点评 本题考查球内接多面体及其度量,考查空间想象能力,计算能力,解答的关键是确定球心位置,利用已知三棱锥的特点是解决问题关键,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,短轴的两个端点分别为A,B,且|AB|=2,△ABF为等边三角形.
(1)求椭圆C的方程;
(2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N;过点M作x轴的垂线,垂足为H,直线NH与椭圆C交于另一点J,若$\overrightarrow{HM}$•$\overrightarrow{HN}$=-$\frac{1}{2}$,试求以线段NJ为直径的圆的方程;
(3)已知l1,l2是过点A的两条互相垂直的直线,直线l1与圆O:x2+y2=4相交于P,Q两点,直线l2与椭圆C交于另一点R,求△PQR面积最大值时,直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若数列{an}的通项公式为an=(-1)n(3n-2),则a1+a2+…+a8=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数y=$\frac{1}{\sqrt{a{x}^{2}-ax+1}}$的定义域R,则实数a的取值范围是[0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设A(x1,a)、B(x2,a)是周期为2π的函数y=sin(ωx-$\frac{π}{3}$)(ω>0)图象上两点,且满足0<x1<x2<2π,0<a<1,则x1+x2=(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{5π}{6}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在空间四边形ABCD中,E是线段AB的中点.
(1)若CF=2FD,连接EF,CE,AF,BF化简下列各式,并在图中标出化简得到的向量:
①$\overrightarrow{AC}$+$\overrightarrow{CB}$+$\overrightarrow{BD}$;
②$\overrightarrow{AF}$-$\overrightarrow{BF}$-$\overrightarrow{AC}$;
③$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\frac{2}{3}$$\overrightarrow{CD}$;
(2)若F为CD的中点,求证:$\overrightarrow{EF}$=$\frac{1}{2}$($\overrightarrow{AD}$+$\overrightarrow{BC}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知动点P的坐标(x,y)满足$\frac{\sqrt{(x-1)^{2}+(y-1)^{2}}}{\frac{|x+y+2|}{\sqrt{2}}}$=$\frac{1}{2}$,则动点P的轨迹是椭圆.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.两平行线4x+3y+5=0与4x+3y+15=0之间的距离是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)$(0.027)^{-\frac{1}{3}}$-$25{6}^{\frac{3}{4}}$+$(2\sqrt{2})^{-\frac{2}{3}}$+π0
(2)2log32-log332+log38-5log53

查看答案和解析>>

同步练习册答案