精英家教网 > 高中数学 > 题目详情

已知,A是抛物线y2=2x上的一动点,过A作圆(x-1)2+y2=1的两条切线分别切圆于EF两点,交抛物线于M、N两点,交y轴于B、C两点

(1)当A点坐标为(8,4)时,求直线EF的方程;

(2)当A点坐标为(2,2)时,求直线MN的方程;

(3)当A点的横坐标大于2时,求△ABC面积的最小值。

(1)∵DEFA四点共圆 EF是圆(x-1)2+y2=1及(x-1)(x-8)+y(y-4)=0

的公共弦    ∴EF的方程为7x+4y-8=0

(2)设AM的方程为y-2=k(x-2)  

即kx-y+2-2k=0与圆(x-1)2+y2=1相切得=1

∴k=  把y-2=(x-2)代入y2=2x得M(),而N(2,-2)

∴MN的方程为3x+2y-2=0

(3)设P(x0,y0),B(0,b),C(0,c),不妨设b>c,  直线PB的方程为y-b=

即(y0-b)x-x0y+x0b=0又圆心(1,0)到PB的距离为1,

所以=1,故(y0-b)2+x=(y0-b)2+2x0b(y0-b)+ xb2

又x0>2,上式化简得(x0-2)b2+2y0b-x0=0  同理有(x0-2)c2+2y0c-x0=0

故b,c是方程(x0-2)t2+2y0t-x0=0的两个实数根

所以b+c=,bc=,则(b-c)2

因为P(x0,y0)是抛物线上的点,所以有y=2x0,则

(b-c)2,b-c=

∴S△PBC(b-c)x0=x0-2++4≥2+4=8

当(x0-2)2=4时,上式取等号,此时x0=4,y=±2,因此S△PBC的最小值为8

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,准线l与x轴交与点K,已知|AK|=
2
|AF|,三角形AFK的面积等于8.
(Ⅰ)求p的值;
(Ⅱ)过该抛物线的焦点作两条互相垂直的直线l1,l2,与抛物线相交得两条弦,两条弦的中点分别为G,H.求|GH|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•钟祥市模拟)已知,A是抛物线y2=2x上的一动点,过A作圆(x-1)2+y2=1的两条切线分别切圆于EF两点,交抛物线于M.N两点,交y轴于B.C两点
(1)当A点坐标为(8,4)时,求直线EF的方程;
(2)当A点坐标为(2,2)时,求直线MN的方程;
(3)当A点的横坐标大于2时,求△ABC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

20090327

 
已知点A是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,准线l与x轴交于点K,已知|AK|=|AF|,三角形AFK的面积等于8.

   (1)求p的值;

   (2)过该抛物线的焦点作两条互相垂直的直线l1l2,与抛物线相交得两条弦,两条弦

的中点分别为G,H.求|GH|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)    已知点A是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,准线l与x轴交于点K,  已知|AK|=|AF|,三角形AFK的面积等于8. (Ⅰ)求p的值;(Ⅱ)过该抛物线的焦点作两条互相垂直的直线l1l2,与抛物线相交得两条弦,两条弦的中点分别为G,H.求|GH|的最小值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省、钟祥一中高三第二次联考数学理卷 题型:解答题

(13分)已知,A是抛物线y2=2x上的一动点,过A作圆(x-1)2+y2=1的两条切线分别切圆于EF两点,交抛物线于M.N两点,交y轴于B.C两点

    (1)当A点坐标为(8,4)时,求直线EF的方程;

    (2)当A点坐标为(2,2)时,求直线MN的方程;

    (3)当A点的横坐标大于2时,求△ABC面积的最小值。

 

查看答案和解析>>

同步练习册答案