精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为极点,轴正半轴为极轴建立极坐标系,设点在曲线上,点在曲线上,且为正三角形.

1)求点的极坐标;

2)若点为曲线上的动点,为线段的中点,求的最大值.

【答案】1 2.

【解析】

1)利用极坐标和直角坐标的互化公式,即得解;

2)设点的直角坐标为,则点的直角坐标为.将此代入曲线的方程,可得点在以为圆心,为半径的圆上,所以的最大值为,即得解.

1)因为点在曲线上,为正三角形,

所以点在曲线上.

又因为点在曲线上,

所以点的极坐标是

从而,点的极坐标是

2)由(1)可知,点的直角坐标为B的直角坐标为

设点的直角坐标为,则点的直角坐标为

将此代入曲线的方程,有

即点在以为圆心,为半径的圆上.

所以的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于MN两点。

(1)写出直线l的普通方程和曲线C的直角坐标方程:

(2)若成等比数列,求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论:在回归分析中

1)可用相关指数的值判断模型的拟合效果,越大,模型的拟合效果越好;

2)可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;

3)可用相关系数的值判断模型的拟合效果,越大,模型的拟合效果越好;

4)可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.

以上结论中,正确的是(

A.1)(3B.2)(3C.1)(4D.3)(4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设X~N(μ1),Y~N(μ2),这两个正态分布密度曲线如图所示,下列结论中正确的是 (  )

A. P(Y≥μ2)≥P(Y≥μ1)

B. P(X≤σ2)≤P(X≤σ1)

C. 对任意正数t,P(X≥t)≥P(Y≥t)

D. 对任意正数t,P(X≤t)≥P(Y≤t)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导数,函数处取得最小值.

1)求证:

2)若时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥中,侧棱平面,底面是直角梯形,为侧棱中点.

1)设为棱上的动点,试确定点的位置,使得平面平面,并写出证明过程;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】出版商为了解某科普书一个季度的销售量(单位:千本)和利润(单位:元/本)之间的关系,对近年来几次调价之后的季销售量进行统计分析,得到如下的10组数据.

序号

1

2

3

4

5

6

7

8

9

10

2.4

3.1

4.6

5.3

6.4

7.1

7.8

8.8

9.5

10

18.1

14.1

9.1

7.1

4.8

3.8

3.2

2.3

2.1

1.4

根据上述数据画出如图所示的散点图:

1)根据图中所示的散点图判断哪个更适宜作为销售量关于利润的回归方程类型?(给出判断即可,不需要说明理由)

2)根据(1)中的判断结果及参考数据,求出关于的回归方程;

3)根据回归方程预测当每本书的利润为10.5元时的季销售量.

参考公式及参考数据:

①对于一组数据,其回归直线的斜率和截距的公式分别为.

②参考数据:

6.50

6.60

1.75

82.50

2.70

表中.另:.计算时,所有的小数都精确到0.01.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】月份的二中迎来了国内外的众多宾客,其中很多人喜欢询问团队模式,为了了解询问团队模式是否与性别有关,在月期间,随机抽取了人,得到如下所示的列联表:

关心团队

不关心团队

合计

男性

12

女性

36

合计

80

1)若在这人中,按性别分层抽取一个容量为的样本,男性应抽人,请将上面的列联表补充完整,并据此资料能否在犯错误的概率不超过前提下,认为关心团队与性别有关系?

2)若以抽取样本的频率为概率,从月来宾中随机抽取人赠送精美纪念品,记这人中关心团队人数为,求的分布列和数学期望.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是南北方向的一条公路,是北偏东方向的一条公路,某风景区的一段边界为曲线.为方便游客光,拟过曲线上的某点分别修建与公路垂直的两条道路,且的造价分别为5万元百米,40万元百米,建立如图所示的直角坐标系,则曲线符合函数模型,设,修建两条道路的总造价为万元,题中所涉及的长度单位均为百米.

1)求解析式;

2)当为多少时,总造价最低?并求出最低造价.

查看答案和解析>>

同步练习册答案