精英家教网 > 高中数学 > 题目详情
函数f(x)=x3-6x2的定义域为[-2,t],设f(-2)=m,f(t)=n,f′(x)是f(x)的导数.
(Ⅰ)求证:n≥m;
(Ⅱ)确定t的范围使函数f(x)在[-2,t]上是单调函数;
(Ⅲ)求证:对于任意的t>-2,总存在x0∈(-2,t),满足f(x0)=
n-mt+2
;并确定这样的x0的个数.
分析:(Ⅰ)设h(t)=n-m代入求出得到h(t)≥0得证;
(Ⅱ)求出f′(x)=0时x的值,在区间[-2,t]上讨论函数的增减性,得到函数的单调区间;
(Ⅲ)n-m=(t+2)(t-4)2,得到
n-m
t+2
=(t-4)2
,f′(x)=3x2-12,我们只要证明方程3x2-12x-(t-4)2=0在(-2,t)内有解即可,设g(x)=3x2-12x-(t-4)2,得到g(-2)•g(t)=-2(t+2)2(t-4)(t-10).讨论t的值来决定方程解的个数即可.
解答:解:(Ⅰ)设h(t)=n-m,则h(t)=t3-6t2+32=(t+2)(t-4)2≥0,所以n≥m.
(Ⅱ)f(x)=3x2-12,令f(x)=0,得x1=0,x2=4.
当t∈(-2,0)时,x∈[-2,t]时,f′(x)>0,f(x)是递增函数;当t=0时,显然f(x)在[-2,0]也是递增函数.
∵x=0是f(x)的一个极值点,∴当t>0时,函数f(x)在[-2,t]上不是单调函数.∴当t∈(-2,0]时,函数f(x)在[-2,t]上是单调函数.
(Ⅲ)由(1),知n-m=(t+2)(t-4)2,∴
n-m
t+2
=(t-4)2

又∵f′(x)=3x2-12,我们只要证明方程3x2-12x-(t-4)2=0在(-2,t)内有解即可.
记g(x)=3x2-12x-(t-4)2,则g(-2)=36-(t-4)2=-(t+2)(t-10),g(t)=3t2-12t-(t-4)2=2(t+2)(t-4),g(-2)=36-(t-4)2>0,g(t)=3t2-12t-(t-4)2>0,
∴g(-2)•g(t)=-2(t+2)2(t-4)(t-10).
①当t∈(-2,4)∪(10,+∞)时,g(-2)•g(t)=-2(t+2)2(t-4)(t-10)<0,方程(*)在(-2,t)内有且只有一解;
②当t∈(4,10)时,g(-2)=-(t+2)(t-10)>0,g(t)=2(t+2)(t-4)>0,又g(2)=-12-(t-4)2<0,∴方程(*)在(-2,2),(2,t)内分别各有一解,方程(*)在(-2,t)内两解;
③当t=4时,方程g(x)=3x2-12x=0在(-2,4)内有且只有一解x=0;
④当t=10时,方程g(x)=3x2-12x-36=3(x+2)(x-6)=0在(-2,10)内有且只有一解x=6.
综上,对于任意的t>-2,总存在x0∈(-2,t),满足f(x0)=
n-m
t+2

当t∈(-2,4]∪[10,+∞)时,满足f(x0)=
n-m
t+2
,x0∈(-2,t)的x0有且只有一个;
当t∈(4,10)时,满足f(x0)=
n-m
t+2
,x0∈(-2,t)的x0恰有两个.
点评:考查学生利用导数来求闭区间上函数最值的能力.利用导数研究函数的单调性的能力,会确定方程解的个数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点.
(1)求b的值;
(2)若1是其中一个零点,求f(2)的取值范围;
(3)若a=1,g(x)=f′(x)+3x2+lnx,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•东城区一模)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为
10
10
,若x=
2
3
时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)已知函数f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0时,试求函数y=f(x)的单调递减区间;
(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B 两点的横坐标之和小于4;
(3)如果对于一切x1、x2、x3∈[0,1],总存在以f(x1)、f(x2)、f(x3)为三边长的三角形,试求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3ax+b(a≠0),已知曲线y=f(x)在点(2,f(x))处在直线y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=x3+ax2-x+1的极值情况,4位同学有下列说法:甲:该函数必有2个极值;乙:该函数的极大值必大于1;丙:该函数的极小值必小于1;丁:方程f(x)=0一定有三个不等的实数根. 这四种说法中,正确的个数是(  )

查看答案和解析>>

同步练习册答案