【题目】(本小题满分12分)
将边长为2的正方形ABCD沿对角线BD折叠,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=.
(Ⅰ)求证:DE⊥AC;
(Ⅱ)求DE与平面BEC所成角的正弦值;
(Ⅲ)直线BE上是否存在一点M,使得CM∥平面ADE,若存在,求点M的位置,不存在请说明理由.
科目:高中数学 来源: 题型:
【题目】椭圆C: =1的右焦点F,过焦点F的直线l0⊥x轴,P(x0 , y0)(x0y0≠0)为C上任意一点,C在点P处的切线为l,l与l0相交于点M,与直线l1:x=3相交于N.
(I) 求证;直线 =1是椭圆C在点P处的切线;
(Ⅱ)求证: 为定值,并求此定值;
(Ⅲ)请问△ONP(O为坐标原点)的面积是否存在最小值?若存在,请求出最小及此时点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AD=DC= AB= ,平面PBC⊥平面ABCD.
(1)求证:AC⊥PB;
(2)若PB=PC= ,问在侧棱PB上是否存在一点M,使得二面角M﹣AD﹣B的余弦值为 ?若存在,求出 的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB⊥CD,AD∥BC,AD=3,BC=2AB=2,E,F分别在BC,AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF⊥平面EFDC.
(Ⅰ)若BE= ,在折叠后的线段AD上是否存在一点P,且 ,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,说明理由;
(Ⅱ)求三棱锥A﹣CDF的体积的最大值,并求此时二面角E﹣AC﹣F的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题p:α∈R,sin(π﹣α)=cosα;命题q:“0<a<4”是“关于x的不等式ax2+ax+1>0的解集是实数集R”的充分必要条件,则下面结论正确的是( )
A.p是假命题
B.q是真命题
C.“p∧q”是假命题
D.“p∨q”是假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,
若函数有唯一零点,则以下四个命题中正确的是______(填写正确序号)
①. ②.函数在处的切线与直线平行
③.函数在上的最大值为
④.函数在 上单调递减
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】连续抛掷同一颗均匀的骰子,令第i次得到的点数为ai , 若存在正整数k,使a1+a2+…+ak=6,则称k为你的幸运数字.
(1)求你的幸运数字为3的概率;
(2)若k=1,则你的得分为5分;若k=2,则你的得分为3分;若k=3,则你的得分为1分;若抛掷三次还没找到你的幸运数字则记0分,求得分X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线的焦点为上任一点在轴上的射影为中点为,.
(1)求动点的轨迹的方程;
(2)直线过与从下到上依次交于,与交于,直线过与从下到上依次交于,与交于,,的斜率之积为,设的面积分别为,是否存在使得成等比数列?若存在,求的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com