精英家教网 > 高中数学 > 题目详情
6.在△ABC中,A,B,C为的a、b、c所对的角,若$cosBcosC-sinBsinC=\frac{1}{2}$.
(1)求A;
(2)若$a=2\sqrt{3},\;b+c=4$,求△ABC的面积.

分析 (1)利用两角和与差的余弦函数公式化简,求出cos(B+C)的值,即可求出A的度数;
(2)利用余弦定理和完全平方公式变形,将a与b+c的值代入求出bc的值,
再利用三角形面积公式求出△ABC的面积.

解答 解:(1)△ABC中,cosBcosC-sinBsinC=$\frac{1}{2}$,
∴cos(B+C)=$\frac{1}{2}$,
又∵0<B+C<π,
∴B+C=$\frac{π}{3}$,
又A+B+C=π,
∴A=$\frac{2π}{3}$;                                        
(2)由余弦定理a2=b2+c2-2bc•cosA,
得(2$\sqrt{3}$)2=(b+c)2-2bc-2bc•cos$\frac{2π}{3}$,
把b+c=4代入得:12=16-2bc+bc,
解得bc=4,
则△ABC的面积为
S=$\frac{1}{2}$bc•sinA=$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.

点评 本题考查了余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握余弦定理是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.用0,1,…,199给200个零件编号,并用系统抽样的方法从中抽取10件作为样本进行质量检测,若第一段中编号为5的零件被取出,则第四段中被取出的零件编号为35.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=lnx-mx,m∈R.
(1)求函数f(x)的单调区间;
(2)若m=0,求证:对于任意的0<x1<x2,恒有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}<\frac{1}{x_1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线x=2ay2的准线方程是x=2,则a的值是(  )
A.$\frac{1}{16}$B.$-\frac{1}{16}$C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则实数m的值1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线x=4y2上一点P(m,1),焦点为F.则|PF|=(  )
A.m+1B.2C.$\frac{63}{16}$D.$\frac{65}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某单位有员工120人,其中女员工有72人,为做某项调查,拟采用分层抽样法抽取容量为15的样本,则男员工应选取的人数是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.圆柱的表面积为S,当圆柱的体积最大时,圆柱的底面半径为(  )
A.$\sqrt{\frac{S}{3π}}$B.$\sqrt{3πS}$C.$\frac{{\sqrt{6πS}}}{6π}$D.$3π\sqrt{6πS}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系xOy中,已知点P为函数y=2lnx的图象与圆M:(x-3)2+y2=r2的公共点,且它们在点P处有公切线,若二次函数y=f(x)的图象经过点O,P,M,则y=f(x)的最大值为$\frac{9}{8}$.

查看答案和解析>>

同步练习册答案