精英家教网 > 高中数学 > 题目详情
4.已知三棱锥P-ABC,在底面△ABC中,∠A=60°,$BC=\sqrt{3}$,PA⊥面ABC,PA=2,则此三棱锥的外接球的体积为(  )
A.$\frac{{8\sqrt{2}}}{3}π$B.$4\sqrt{3}π$C.$\frac{{4\sqrt{2}π}}{3}$D.

分析 设△ABC外接圆半径为r,设三棱锥P-ABC球半径为R,由正弦定理,求出r=1,再由勾股定理得R,由此能求出三棱锥的外接球的体积.

解答 解:设△ABC外接圆半径为r,设三棱锥P-ABC球半径为R,设△ABC外心为O
∵三棱锥P-ABC,在底面△ABC中,∠A=60°,BC=$\sqrt{3}$,PA⊥面ABC,PA=2,
∴由正弦定理,得:2r=2,
解得r=1,即OA=1,
球心到△ABC的外接圆圆心的距离d=1
故球的半径R=$\sqrt{2}$
故三棱锥P-ABC外接球的体积V=$\frac{4}{3}π•(\sqrt{2})^{3}$=$\frac{8\sqrt{2}}{3}$π
故选:A.

点评 本题考查三棱锥的外接球体积的求法,是中档题,确定球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知定义在R上的单调函数f(x)满足f(x+y)=f(x)+f(y).
(1)求f(0)的值;
(2)求证:f(x)为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.A={x|x2-2x-3<0},B={x|(x-m-1)(x-m+1)≥0}
(1)当m=3时,求A∪B
(2)若p:x2-2x-3<0;q:(x-m-1)(x-m+1)≥0且q是p的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设复数w=($\frac{a+i}{1+i}$)2,其中a为实数,若w的实部为2,则w的虚部为(  )
A.-$\frac{3}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题中的假命题是(  )
A.若a<b<0,则$\frac{1}{a}>\frac{1}{b}$B.若$\frac{1}{a}>1$,则0<a<1C.若a>b>0,则a4>b4D.若a<1,则$\frac{1}{a}<1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面ABCD是正方形,DM⊥PC,垂足为M.
(1)求证:BD⊥平面PAC.
(2)求证:平面MBD⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直三棱柱ABC-A1B1C1的六个顶点都在直径为$\sqrt{269}$的球面上,且AB=5,AC=12,BC=13,点D是BB1的中点,则AD与平面BCC1B1所成角的正弦值为(  )
A.$\frac{6}{13}$B.$\frac{5}{13}$C.$\frac{6\sqrt{2}}{13}$D.$\frac{5\sqrt{2}}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax-(k-1)a-x(a>1)是定义在R 上的奇函数.
(1)求k 的值并判断函数 f (x)单调性;
(2)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知a,b是常数,ab≠0,若函数f(x)=ax3+barcsinx+3的最大值为10,则f(x)的最小值为-4.

查看答案和解析>>

同步练习册答案