精英家教网 > 高中数学 > 题目详情
已知椭圆C的中心在坐标原点,右焦点为F(1,0),A,B是椭圆的左、右顶点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为2
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)直线AP与直线x=2交于点D.试判断以BD为直径的圆与直线PF的位置关系,并证明你的结论.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)设椭圆C方程,利用右焦点为F(1,0),△APB面积的最大值为2
3
,建立方程组,即可求椭圆C的方程;
(Ⅱ)设直线AP的方程,可得D的坐标,直线方程代入椭圆方程,利用韦达定理求出P的坐标,分类讨论,结合点到直线的距离公式,即可得出结论.
解答: (Ⅰ)解:由题意可设椭圆C方程为:
x2
a2
+
y2
b2
=1(a>b>0),则
因为右焦点为F(1,0),△APB面积的最大值为2
3

所以
1
2
•2a•b=2
3
a2-b2=1

所以a=2,b=
3

所以椭圆C的方程为
x2
4
+
y2
3
=1.
(Ⅱ)以BD为直径的圆与直线PF相切.
证明:由题意,设直线AP的方程为y=k(x+2)(k≠0).
则点D坐标为(2,4k),BD中点E的坐标为(2,2k).
由直线方程代入椭圆方程可得(3+4k2)x2+16k2x+16k2-12=0.
设点P的坐标为(x0,y0),则-2x0=
16k2-12
3+4k2

所以x0=
6-8k2
3+4k2
,y0=
12k
3+4k2

因为点F坐标为(1,0),
当k=±
1
2
时,点P的坐标为(1,±
3
2
),点D的坐标为(2,±2).
直线PF⊥x轴,此时以BD为直径的圆(x-2)2+(y-2k)2=1与直线PF相切.
当k≠±
1
2
时,则直线PF的斜率
y0
x0-1
=
4k
1-4k2

所以直线PF的方程为y=
4k
1-4k2
(x-1). 
点E到直线PF的距离d=
|
8k
1-4k2
-2k-
4k
1-4k2
|
16k2
(1-4k2)2
+1
=2|k|.
又因为|BD|=4|k|,所以d=
1
2
|BD|.
故以BD为直径的圆与直线PF相切.
综上得,以BD为直径的圆与直线PF相切.
点评:本题考查椭圆的方程,考查直线与椭圆的位置关系,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若复数z与(z-1)2-2i都是纯虚数,则z=(  )
A、iB、-iC、±iD、1

查看答案和解析>>

科目:高中数学 来源: 题型:

我市某服装厂生产的服装供不应求,A车间接到生产一批西服的紧急任务,要求必须在12天内完成.为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高,每天生产的西服数量y(套)与时间x(天)的关系如下表:
时间x(天)1234
每天产量y(套)22242628
平均每套西服的成本z(元)与时间x(天)的关系如图:
请解答下列问题.
(1)求每天生产的西服数量y(套)与x(天)之间的关系式及成本z(元)与x(天)之间的关系式.
(2)已知这批西服的订购价格为每套1400元,设该车间每天的利润为W(元),试求出日利润W(元)与时间x(天)之间的函数关系式,并求出哪一天该车间获得最大利润,最大利润是多少元?
(3)在实际销售中,厂家决定从第13天起,每天按日最大利润进行生产并完全售出.生产7天后,由于机器损耗等原因,平均每套西服的成本比日最大利润时增加0.5a%(a<50),所以厂家把定购价提高了200元再生产8天,但这8天的日销量比日最大利润时的销量下降了a%,根据销售记录显示,这8天的销售利润的总和与前7天的销售利润总和持平,求整数a.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足f(x+1)-f(x)=2x+3,且f(0)=4.
(1)求f(x)的解析式;
(2)求f(x)在[-3,4]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,数列{bn}满足bn=log2(an+1),a1=1且对于任意n≥2,n∈N+有an=2an-1+1.
(1)证明数列{an+1}是等比数列,并求数列{an}的通项公式;
(2)若cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
2
lnx-
1
2e2
x(e为自然对数的底),g(x)=x-
a
x
(a>0).若对任意x1,x2∈[2,2e2]都有g(x1)≥f(x2),则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
a
x
在定义域[1,20]上单调递增.
(1)求a的取值范围;
(2)若方程f(x)=10存在整数解,求满足条件a的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,圆C的参数方程
x=1+cosφ
y=sinφ
为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)直线l的极坐标方程是2ρsin(θ+
π
3
)=3
3
,射线OM:θ=
π
3
与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(Ⅰ)若函数f(x)在区间(m,m+
1
3
)(m>0)上存在极值,求实数m的取值范围;
(Ⅱ)设g(x)=
1+x
a(1-x)
[xf(x)-1],若对任意x∈(0,1)恒有g(x)<-2,求实数a的取值范围.

查看答案和解析>>

同步练习册答案
鍏� 闂�