精英家教网 > 高中数学 > 题目详情
4.已知x满足$\sqrt{3}≤{3^x}≤9$.
(1)求 x 的取值范围;
(2)求函数$y=({log_2}^x-1)({log_2}^x+3)$的值域.

分析 (1)直接由指数函数的单调性,求得x的取值范围;
(2)由(1)中求得的x的范围,得到log2x的范围,令t=log2x换元,再由二次函数的图象和性质求得函数$y=({log_2}^x-1)({log_2}^x+3)$的值域.

解答 解:(1)∵$\sqrt{3}≤{3^x}≤9$,
∴${3^{\frac{1}{2}}}≤{3^x}≤{3^2}$,
由于指数函数y=3x在R上单调递增,
∴$\frac{1}{2}≤x≤2$;
(2)由(1)得$\frac{1}{2}≤x≤2$,
∴-1≤log2x≤1,
令t=log2x,则y=(t-1)(t+3)=t2+2t-3,其中t∈[-1,1],
∵函数y=t2+2t-3开口向上且对称轴为t=-1,
∴函数y=t2+2t-3在t∈[-1,1]上单调递增,
∴y的最大值为f(1)=0,最小值为f(-1)=-4.
∴函数y=(log2x-1)(log2x+3)的值域为[-4,0].

点评 本题考查指数不等式的解法,训练了函数值域的求法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.对于常数m、n,“关于x的方程x2-mx+n=0有两个正根”是“方程mx2+ny2=1的曲线是椭圆”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,周长为1的圆的圆心C在y轴上,一动点M从圆上的点A(0,1)开始按逆时针方向绕圆运动一周,记走过的弧长为x,直线AM与x轴交于点N(t,0),则函数t=f(x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线C 的顶点在原点,F($\frac{1}{2}$,0)为抛物线的焦点.
(1)求抛物线C 的方程;
(2)过点F 的直线l与动抛物线C 交于 A、B 两点,与圆M:${(x-\frac{3}{2})^2}+{(y-8)^2}=49$交于D、E两点,且D、E位于线段 AB上,若|AD|=|BE|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.正方体的棱长是2,则其外接球的体积是$4\sqrt{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a=log23,b=log3$\frac{1}{2}$,$c={(\frac{1}{2})^3}$,则a、b、c的大小关系是(  )
A.a<b<cB.c<b<aC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.抽气机每次抽出容器内空气的50%,则至少要抽10次才能使容器内剩下的空气少于原来的0.1%.(参考数据:lg2=0.3010,lg3=0.4771)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={0,2,3},B={2,a2+1},且B⊆A,则实数a=$±\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若曲线x2+(y+3)2=4(其中y≥-3)与直线y=k(x-2)有两个不同的交点,则实数k的取值范围为$\frac{5}{12}$<k≤$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案