【题目】已知抛物线,过抛物线C的焦点F的直线l交抛物线C于A,B两点,且A,B两点在抛物线C的准线上的投影分别P、Q.
(1)已知,若,求直线l的方程;
(2)设P、Q的中点为M,请判断PF与MB的位置关系并说明理由.
科目:高中数学 来源: 题型:
【题目】数(其中)的图象如图所示,为了得到的图象,则只要将的图象上所有的点( )
A.向左平移个单位长度,纵坐标缩短到原来的,横坐标不变
B.向左平移个单位长度,纵坐标伸长到原来的3倍横坐标不变
C.向右平移个单位长度,纵坐标缩短到原来的,横坐标不变
D.向右平移个单位长度,纵坐标伸长到原来的3倍,横坐标不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位为了更好地应对新型冠状病毒肺炎疫情,对单位的职工进行防疫知识培训,所有职工选择网络在线培训和线下培训中的一种方案进行培训.随机抽取了140人的培训成绩,统计发现样本中40个成绩来自线下培训职工,其余来自在线培训的职工,并得到如下统计图表:
(1)写出线下培训茎叶图中成绩的中位数,估算在线培训直方图的中位数(保留一位小数);
(2)得分90分及以上为成绩优秀,完成下边列联表,并判断是否有的把握认为成绩优秀与培训方式有关?
优秀 | 非优秀 | 合计 | |
线下培训 | |||
在线培训 | |||
合计 |
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂改造一废弃的流水线M,为评估流水线M的性能,连续两天从流水线M生产零件上随机各抽取100件零件作为样本,测量其直径后,整理得到下表:记抽取的零件直径为X.
第一天
直径/mm | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
第二天
直径/mm | 58 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 1 | 1 | 2 | 4 | 5 | 21 | 34 | 21 | 3 | 3 | 2 | 1 | 1 | 1 | 100 |
经计算,第一天样本的平均值,标准差第二天样本的平均值,标准差
(1)现以两天抽取的零件来评判流水线M的性能.
(i)计算这两天抽取200件样本的平均值和标准差(精确到0.01);
(ii)现以频率值作为概率的估计值,根据以下不等式进行评判(P表示相应事件的概率),①;②;③评判规则为:若同时满足上述三个不等式,则设备等级为优;仅满足其中两个,则等级为良;若仅满足其中一个,则等级为合格;若全部不满足,则等级为不合格,试判断流水线M的性能等级.
(2)将直径X在范围内的零件认定为一等品,在范围以外的零件认定为次品,其余认定为合格品.现从200件样本除一等品外的零件中抽取2个,设为抽到次品的件数,求分布列及其期望.
附注:参考数据:,,;
参考公式:标准差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国家规定每年的月日以后的天为当年的暑假.某钢琴培训机构对位钢琴老师暑假一天的授课量进行了统计,如下表所示:
授课量(单位:小时) | |||||
频数 |
培训机构专业人员统计近年该校每年暑假天的课时量情况如下表:
课时量(单位:天) | |||||
频数 |
(同组数据以这组数据的中间值作代表)
(1)估计位钢琴老师一日的授课量的平均数;
(2)若以(1)中确定的平均数作为上述一天的授课量.已知当地授课价为元/小时,每天的各类生活成本为元/天;若不授课,不计成本,请依据往年的统计数据,估计一位钢琴老师天暑假授课利润不少于万元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆: 经过椭圆: 的左右焦点,且与椭圆在第一象限的交点为,且三点共线,直线交椭圆于, 两点,且().
(1)求椭圆的方程;
(2)当三角形的面积取得最大值时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在党中央的正确领导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份“新冠肺炎”疫情得到了控制.甲、乙两个地区采取防护措施后,统计了从2月7日到2月13日一周的新增“新冠肺炎”确诊人数,绘制成如图折线图:
(1)根据图中甲、乙两个地区折线图的信息,写出你认为最重要的两个统计结论;
(2)新冠病毒在进入人体后有一段时间的潜伏期,此期间为病毒传播的最佳时期,我们把与病毒感染者有过密切接触的人群称为密切接触者,假设每位密切接触者不再接触其他病毒感染者,10天内所有人不知情且生活照常.
(i)在不加任何防护措施的前提下,假设每位密切接触者被感染的概率均为.第一天,若某位感染者产生名密切接触者则第二天新增感染者平均人数为ap;第二天,若每位感染者都产生a名密切接触者,则第三天新增感染者平均人数为;以此类推,记由一名感染者引发的病毒传播的第n天新增感染者平均人数为.写出,;
(ii)在(i)的条件下,若所有人都配戴口罩后,假设每位密切接触者被感染的概率均为,且满足关系,此时,记由一名感染者引发的病毒传播的第n天新增感染者平均人数为.当最大,且时,根据和的值说明戴口罩的必要性.(精确到)
参考公式:函数的导函数;
参考数据:,,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com