【题目】已知函数 在处取到极值2.
(1)求的解析式;
(2)若a<e,函数,若对任意的,总存在(为自然对数的底数),使得,求实数的取值范围.
【答案】(1);(2)
【解析】
(1)先对函数求导,再由函数在处取到极值2,可列出方程组,解方程组即可得出解析式;
(2)由(1)可得函数的定义域为R,且函数为奇函数,进而求出的值域,从而可求出的最小值,因此可将函数,若对任意的,总存在(为自然对数的底数),使得的问题转化为在上成立的问题,用导数的方法研究函数的单调性和最值即可求出结果.
(1)因为,所以,
由在处取到极值2,可得
,解得,经检验,此时在取得极值,
所以
(2)由(1)知的定义域为R,且,所以函数为奇函数,,
时,,,当且仅当时,取等号;
故函数的值域为,从而,依题意有,
函数的定义域为,,
①当时,,函数在区间上单调的证,其最小值为,
符合题意;
②当时,函数函数在区间上有,单调递减;在区间上有,单调递增;所以函数最小值为,由,得,所以符合题意;
③当时,显然函数在上单调递减,其最小值为,不符合题意;
综上所述,实数的取值范围.为.
科目:高中数学 来源: 题型:
【题目】若数列同时满足:①对于任意的正整数, 恒成立;②对于给定的正整数, 对于任意的正整数恒成立,则称数列是“数列”.
(1)已知判断数列是否为“数列”,并说明理由;
(2)已知数列是“数列”,且存在整数,使得, , , 成等差数列,证明: 是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:经过点(,),且两个焦点,的坐标依次为(1,0)和(1,0).
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设,是椭圆上的两个动点,为坐标原点,直线的斜率为,直线的斜率为,求当为何值时,直线与以原点为圆心的定圆相切,并写出此定圆的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四位同学参加比赛,只有其中三位获奖.甲说:“乙或丙未获奖”;乙说:“甲、丙都获奖”;丙说:“我未获奖”;丁说:“乙获奖”.四位同学的话恰有两句是对的,则( )
A. 甲和乙不可能同时获奖 B. 丙和丁不可能同时获奖
C. 乙和丁不可能同时获奖 D. 丁和甲不可能同时获奖
【答案】C
【解析】若甲乙丙同时获奖,则甲丙的话错,乙丁的话对;符合题意;
若甲乙丁同时获奖,则乙的话错,甲丙丁的话对;不合题意;
若甲丙丁同时获奖,则丙丁的话错,甲乙的话对;符合题意;;
若丙乙丁同时获奖,则甲乙丙的话错,丁的话对;不合题意;
因此乙和丁不可能同时获奖,选C.
【题型】单选题
【结束】
12
【题目】已知当时,关于的方程有唯一实数解,则值所在的范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为研究学生的身体素质与与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如下表:(平均每天锻炼的时间单位:分钟)
将学生日均课外体育运动时间在上的学生评价为“课外体育达标”.
平均每天锻炼的时间(分钟) | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
请根据上述表格中的统计数据填写下面列联表,并通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”与性别有关?
课外体育不达标 | 课外体育达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
从上述200名学生中,按“课外体育达标”、“课外体育不达标”分层抽样,抽取4人得到一个样本,再从这个样本中抽取2人,求恰好抽到一名“课外体育不达标”学生的概率.
参考公式:,其中.
参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入,政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益M、养鸡的收益N与投入a(单位:万元)满足,N=a+20.设甲合作社的投入为x(单位:万元),两个合作社的总收益为f(x)(单位:万元).
(1)当甲合作社的投入为25万元时,求两个合作社的总收益;
(2)试问如何安排甲、乙两个合作社的投入,才能使总收益最大,最大总收益为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为创建国家级文明城市,某城市号召出租车司机在高考期间至少参加一次“爱心送考”,该城市某出租车公司共200名司机,他们参加“爱心送考”的次数统计如图所示.
(1)求该出租车公司的司机参加“爱心送考”的人均次数;
(2)从这200名司机中任选两人,设这两人参加送考次数之差的绝对值为随机变量,求的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com