精英家教网 > 高中数学 > 题目详情

【题目】已知函数 处取到极值2.

(1)求的解析式;

(2)若a<e,函数,若对任意的,总存在为自然对数的底数),使得,求实数的取值范围.

【答案】(1);(2)

【解析】

(1)先对函数求导,再由函数处取到极值2,可列出方程组,解方程组即可得出解析式;

(2)(1)可得函数的定义域为R,且函数为奇函数,进而求出的值域,从而可求出的最小值,因此可将函数,若对任意的,总存在为自然对数的底数),使得的问题转化为上成立的问题,用导数的方法研究函数的单调性和最值即可求出结果.

(1)因为,所以

处取到极值2,可得

,解得,经检验,此时取得极值,

所以

(2)由(1)知的定义域为R,且,所以函数为奇函数,

时,,当且仅当时,取等号;

故函数的值域为,从而,依题意有

函数的定义域为

时,,函数在区间上单调的证,其最小值为,

符合题意;

②当时,函数函数在区间上有,单调递减;在区间上有,单调递增;所以函数最小值为,由,得,所以符合题意;

③当时,显然函数上单调递减,其最小值为,不符合题意;

综上所述,实数的取值范围.为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若数列同时满足:①对于任意的正整数 恒成立;②对于给定的正整数 对于任意的正整数恒成立,则称数列是“数列”.

(1)已知判断数列是否为“数列”,并说明理由;

(2)已知数列是“数列”,且存在整数,使得 成等差数列,证明: 是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点),且两个焦点的坐标依次为(1,0)和(1,0).

(Ⅰ)求椭圆的标准方程;

(Ⅱ)是椭圆上的两个动点,为坐标原点,直线的斜率为,直线的斜率为,求当为何值时,直线与以原点为圆心的定圆相切,并写出此定圆的标准方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四位同学参加比赛,只有其中三位获奖.甲说:“乙或丙未获奖”;乙说:“甲、丙都获奖”;丙说:“我未获奖”;丁说:“乙获奖”.四位同学的话恰有两句是对的,则( )

A. 甲和乙不可能同时获奖 B. 丙和丁不可能同时获奖

C. 乙和丁不可能同时获奖 D. 丁和甲不可能同时获奖

【答案】C

【解析】若甲乙丙同时获奖,则甲丙的话错,乙丁的话对;符合题意;

若甲乙丁同时获奖,则乙的话错,甲丙丁的话对;不合题意;

若甲丙丁同时获奖,则丙丁的话错,甲乙的话对;符合题意;;

若丙乙丁同时获奖,则甲乙丙的话错,丁的话对;不合题意;

因此乙和丁不可能同时获奖,选C.

型】单选题
束】
12

【题目】已知当时,关于的方程有唯一实数解,则值所在的范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,当时,,且对任意的实数,等式恒成立,若数列满足,且,则的值为(

A.4037B.4038C.4027D.4028

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如下表:(平均每天锻炼的时间单位:分钟)

将学生日均课外体育运动时间在上的学生评价为“课外体育达标”.

平均每天锻炼的时间(分钟)

总人数

20

36

44

50

40

10

请根据上述表格中的统计数据填写下面列联表,并通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”与性别有关?

课外体育不达标

课外体育达标

合计

20

110

合计

从上述200名学生中,按“课外体育达标”、“课外体育不达标”分层抽样,抽取4人得到一个样本,再从这个样本中抽取2人,求恰好抽到一名“课外体育不达标”学生的概率.

参考公式:,其中.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某镇在政府精准扶贫的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入,政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益M、养鸡的收益N与投入a(单位:万元)满足Na+20.设甲合作社的投入为x(单位:万元),两个合作社的总收益为fx)(单位:万元).

1)当甲合作社的投入为25万元时,求两个合作社的总收益;

2)试问如何安排甲、乙两个合作社的投入,才能使总收益最大,最大总收益为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图三棱柱中,侧面为菱形,.

(Ⅰ)证明:

(Ⅱ)若AB=BC,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为创建国家级文明城市,某城市号召出租车司机在高考期间至少参加一次“爱心送考”,该城市某出租车公司共200名司机,他们参加“爱心送考”的次数统计如图所示.

(1)求该出租车公司的司机参加“爱心送考”的人均次数;

(2)从这200名司机中任选两人,设这两人参加送考次数之差的绝对值为随机变量,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案