精英家教网 > 高中数学 > 题目详情
11.已知集合P={x||x-1|>2},S={x|x2-(a+1)x+a>0}.
(1)若a=2,求集合S;
(2)若a>1,x∈S是x∈P的必要条件,求实数a的范围.

分析 (1)当a=2时,我们易将S中的条件化为x2-3x+2>0,解一元二次不等式,即可得到集合S;
(2)解绝对值不等式|x-1|>2,可以求出集合P,根据x∈S是x∈P的必要条件,我们易判断出集合P与S的包含关系,构造出关于a的不等式,最后讨论结果,即可得到实数a的取值范围.

解答 解:(1)当a=2时,不等式x2-(a+1)x+a>0即为x2-3x+2>0
解得x<1或x>2
∴S={x|x<1或x>2},
(2)由|x-1|>2解得x<-1或x>3,
∴P={x|x<-1或x>3}
由x2-(a+1)x+a>0即(x-a)(x-1)>0
∵x∈S是x∈P的必要条件,
∴P⊆S,
当a>1时,S={x|x<1或x>a}
由P⊆S得a≤3,
∴1<a≤3,
故实数a的取值范围(1,3].

点评 本题考查的知识点是集合关系中的参数取值问题,必要条件,充分条件与充要条件的判断,其中根据充要条件的集合法解法法则,判断出集合P与S的包含关系,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.定义在R上的奇函数y=f(x)满足f(x+2)=f(-x),则f(2008)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)=$\sqrt{x}$,则f(4)=(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“若p不正确,则q不正确”的等价命题是(  )
A.若q不正确,则p不正确B.若q正确,则p正确
C.若p正确,则q不正确D.若p正确,则q正确

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=e2x+sin3x,则f′(0)=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知公差不为0的等差数列{an}的首项a1=a,a≠0,前n项和为Sn,且$\frac{1}{a}$,$\frac{1}{{a}_{2}}$,$\frac{1}{{a}_{4}}$成等比数列.
(1)求数列{an}的通项公式;
(2)设数列{$\frac{1}{{S}_{n}}$}的前n项和为An,若A2015=$\frac{2015}{2016}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给出下列四个算式及运算结果:
①$\sqrt{\sqrt{\sqrt{x}}}$=x${\;}^{\frac{1}{6}}$;②$\sqrt{x\sqrt{x\sqrt{x}}}$=x${\;}^{\frac{7}{6}}$;③$\frac{x}{\sqrt{{x}^{3}\sqrt{x}}}$=x${\;}^{-\frac{2}{3}}$;④$\frac{{x}^{2}}{\sqrt{x}•\root{3}{{x}^{2}}}$=x${\;}^{\frac{5}{6}}$.
其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{5}$=1与过点(0,-1)的直线相交于M,N两点,若MN中点的横坐标为-$\frac{2}{3}$,则直线的方程是y=x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow a=(\sqrt{3}sinx-cosx,1)$,$\overrightarrow b=(cosx,m)$,函数f(x)=$\overrightarrow a•\overrightarrow b$(m∈R)的图象过点M($\frac{π}{12}$,0).
(Ⅰ)求m的值以及函数f(x)的最小正周期和单调增区间;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,若ccosB+bcosC=2acosB,求f(A)的取值范围.

查看答案和解析>>

同步练习册答案