精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c的图象过A(t1,y1)、B(t2,y2)两点,且满足a2+(y1+y2)a+y1y2=0.
(1)证明y1=-a或y2=-a;
(2)证明函数f(x)的图象必与x轴有两个交点;
(3)若关于x的不等式f(x)>0的解集为{x|x>m或x<n,n<m<0},解关于x的不等式cx2-bx+a>0.
分析:(1)由题知a2+(y1+y2)a+y1y2=0解得y1或y2即可;
(2)讨论a>0,函数为开口向上的抛物线,a<0时函数图象开口向下,由(2)得图象上的点A、B的纵坐标大于小于0得到与x轴有两个交点即可;
(3)根据已知不等式的解集得到a的符号且可得ax2+bx+c=0的两根为m,n,然后利用根与系数的关系化简不等式求出解集即可.
解答:解:(1)证明:∵a2+(y1+y2)a+y1y2=0,
∴(a+y1)(a+y2)=0,得y1=-a或y2=-a.
(2)证明:当a>0时,二次函数f(x)的图象开口向上,图象上的点A、B的纵坐标至少有一个为-a且小于零,
∴图象与x轴有两个交点.
当a<0时,二次函数f(x)的图象开口向下,图象上的点A、B的纵坐标至少有一个为-a且大于零,
∴图象与x轴有两个交点.
故二次函数f(x)的图象与x轴有两个不同的交点.
(3)∵ax2+bx+c>0的解集为{x|x>m或x<n,n<m<0}.
根据一元二次不等式大于0取两边,从而可判定a>0,
并且可得ax2+bx+c=0的两根为m,n,
m+n=-
b
a
m•n=
c
a
>0
,∴a>0

m+n
m•n
=
-
b
a
a
c
=-
b
c

而cx2-bx+a>0?x2-
b
c
x+
a
c
>0?x2+(
m+n
mn
)x+
1
mn
>0?(x+
1
m
)(x+
1
n
)>0,
又∵n<m<0,∴-
1
n
<-
1
m
,∴x>-
1
m
或x<-
1
n

故不等式cx2-bx+a>0的解集为{x|x>-
1
m
或x<-
1
n
}.
点评:考查学生函数与方程的综合运用能力,以及一元二次方程根与系数关系的灵活运用,不等式取解集方法的运用能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案