【题目】已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线.
(1)求曲线的方程;
(2)设为曲线上的一个不在轴上的动点, 为坐标原点,过点作的平行线交曲线于、两个不同的点,求面积的最大值.
【答案】(1);(2)的面积的最大值为.
【解析】试题分析:(1)由所给两圆的位置关系及图像,知动圆与圆内切,再由两圆内切时半径与圆心距的关系可得,则,满足椭圆的定义,可知点轨迹方程为椭圆,再由椭圆定义可求得各椭圆方程各系数值;(2)可设直线的方程,及, , 将直线方程与椭圆方程联立,利用根与系数的关系与弦长公式可求得长度,再求出点到直线.利用函数性质可求得面积最大值.
试题解析:(1)设圆的半径为,圆心的坐标为,
由于动圆与圆只能内切
所以
则,
所以圆心的轨迹是以点, 为焦点的椭圆.
且,则.
所以曲线的方程为.
(2)设, , ,直线的方程为,
由可得,
则, .
所以
.
因为,所以的面积等于的面积.
点到直线 的距离.
所以的面积
.
令,则, .
设,则,
因为,所以.
所以在上单调递增.
所以当时, 取得最小值,其值为9.
所以的面积的最大值为.
说明: 的面积 .
科目:高中数学 来源: 题型:
【题目】某农科所发现,一种作物的年收获量 (单位: )与它“相近”作物的株数 具有线性相关关系(所谓两株作物“相近”是指它们的直线距离不超过 ),并分别记录了相近作物的株数为 时,该作物的年收获量的相关数据如下:
(1)求该作物的年收获量 关于它“相近”作物的株数 的线性回归方程;
(2)农科所在如图所示的直角梯形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,图中
每个小正方形的边长均为 ,若从直角梯形地块的边界和内部各随机选取一株该作物,求这两株作物 “相
近”且年产量仅相差 的概率.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估
计分别为, ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修44:坐标系与参数方程
在直角坐标系中,已知直线l1: (, ),抛物线C: (t为参数).以原点为极点, 轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求直线l1 和抛物线C的极坐标方程;
(Ⅱ)若直线l1 和抛物线C相交于点A(异于原点O),过原点作与l1垂直的直线l2,l2和抛物线C相交于点B(异于原点O),求△OAB的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生每次投篮的命中概率都为.现采用随机模拟的方法求事件的概率:先由计算器产生0到9之间的整数值随机数,制定1、2、3、4表示命中,5、6、7、8、9、0表示不命中;再以每3个随机数为一组,代表三次投篮的结果.经随机模拟产生如下20组随机数:989 537 113 730 488 556 027 393 257 431 683 569 458 812 932 271 925 191 966 907,据此统计,该学生三次投篮中恰有一次命中的概率约为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分15分)如图,在四棱锥中,平面PAD⊥平面ABCD, ,,E是BD的中点.
(Ⅰ)求证:EC//平面APD;
(Ⅱ)求BP与平面ABCD所成角的正切值;
(Ⅲ)求二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知非空集合A={x|2a+1≤x≤3a﹣5},B={x|3≤x≤22},
(1)当a=10时,求A∩B,A∪B;
(2)求能使AB成立的a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com