精英家教网 > 高中数学 > 题目详情
16.已知数列{an}为等比数列,其前n项和为Sn,且S1,S2的等差中项为S3,若8(a1+a3)=-5.
(1)求数列[an]的通项公式;
(2)记Rn=|$\frac{1}{a_1}|+|\frac{2}{a_2}|+|\frac{3}{a_3}|+…+|\frac{n}{a_n}$|,对于任意的n≥2,n∈N*,不等式m(Rn-n-1)≥(n-1)2恒成立,求实数m的取值范围.

分析 (1)设等比数列的公比为q,运用等差数列的性质和等比数列的通项公式,列方程,解得首项和公比,即可得到所求通项公式;
(2)运用错位相减法求得Rn,再由参数分离和数列的单调性,可得最大值,即可得到m的范围.

解答 解:(1)设等比数列的公比为q,
S1,S2的等差中项为S3,可得2S3=S1+S2
即为2(a1+a1q+a1q2)=a1+a1+a1q,
又8(a1+a3)=-5.即为8(a1+a1q2)=-5,
解得a1=q=-$\frac{1}{2}$,
∴${a_n}={(-\frac{1}{2})^n}(n∈{N^*})$;
(2)${R_n}=1×{2^1}+2×{2^2}+3×{2^3}+…+n×{2^n}$,
2Rn=1×22+2×23+…+(n-1)×2n+n×2n+1
-Rn=2+22+…+2n-n•2n+1=$\frac{2(1-{2}^{n})}{1-2}$n•2n+1,即Rn=n•2n+1-2n+1+2,
n≥2,n∈N*,不等式m(Rn-n-1)≥(n-1)2恒成
即m(n•2n+1-2n+1+2-n-1)≥(n-1)2
即$m≥\frac{n-1}{{{2^{n+1}}-1}}(n≥2,n∈{N^*})$恒成立,
记$f(n)=\frac{n-1}{{{2^{n+1}}-1}},f(n+1)-f(n)=\frac{n}{{{2^{n+2}}-1}}-\frac{n-1}{{{2^{n+1}}-1}}=\frac{{(2-n)•{2^{n+1}}-1}}{{({2^{n+2}}-1)•({2^{n+1}}-1)}}<0$,
∴f(n)单调递减.                                                
∴$f(n)≤f(2)=\frac{2-1}{{{2^3}-1}}=\frac{1}{7}$∴$m≥\frac{1}{7}$,
∴n≥2,n∈N*,不等式m(Rn-n-1)≥(n-1)2恒成立的实数m的取值范围为$[\frac{1}{7},+∞)$.

点评 本题考查等差数列和等比数列的通项和性质的运用,考查数列的单调性的证明和运用:求不等式恒成立问题,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\frac{1}{ln(x+1)}$的定义域为(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果a和b是异面直线,直线a∥c,那么直线b与c的位置关系是(  )
A.相交B.异面C.平行D.相交或异面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.现有A、B、C、D四种玉米种子,其亩产量和方差如下表所示
ABCD
平均亩产量$\overline x$(kg)830890890870
方差s23.53.72.56.0
从其中选择一种种子进行量产,最好选择(  )
A.A种子B.B种子C.C种子D.D种子

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知两个具有线性相关关系的变量x,y的测量数据如下:
x1236
y2356
通过最小二乘法求其线性回归方程,并预报当变量x为14时,变量y的值.
( 注:线性回归方程y=bx+a,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},a=\overline y-b\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若tan x=-3,则$\frac{{1-3{{cos}^2}x}}{{sinxcosx+{{cos}^2}x}}$=$-\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{2x}{x^2+6}$,若f(x)>k的解集为{x|x<-3或x>-2},求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知sin20°=a,则sin50°等于(  )
A.1-2a2B.1+2a2C.1-a2D.a2-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.对任意实数x,x2-4bx+3b>0恒成立,则b的取值范围是0<b<$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案