精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为等腰梯形,,其中点在以为直径的圆上,,平面平面.

1)证明:平面.

2)求二面角的正弦值.

【答案】(1)详见解析;(2).

【解析】

1)连接,根据直径所对圆周角是直角,得到,计算出的长,通过勾股定理证得,再根据面面垂直的性质定理得到平面.(2)为坐标原点,分别以的方向为轴的正方向建立空间直角坐标系通过计算平面和平面的法向量,计算二面角的余弦值,进而求得其正弦值.

1)证明:连接,因为点在以为直径的圆上,所以.

因为,所以.

所以.

因为为等腰梯形,

所以.

又因为

所以,从而得.

又因为平面平面,平面平面

所以平面.

2)解:由(1)易知两两垂直,以为坐标原点,分别以的方向为轴的正方向建立空间直角坐标系,则.

因为,所以.

设平面的法向量为,平面的法向量为

,得,令,得

,得,令,得

所以,所以

故二面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】网约车的兴起丰富了民众出行的选择,为民众出行提供便利的同时也解决了很多劳动力的就业问题,据某著名网约车公司“滴滴打车”官网显示,截止目前,该公司已经累计解决退伍军人转业为兼职或专职司机三百多万人次,梁某即为此类网约车司机,据梁某自己统计某一天出车一次的总路程数可能的取值是20、22、24、26、28、,它们出现的概率依次是、t、

(1)求这一天中梁某一次行驶路程X的分布列,并求X的均值和方差;

(2)网约车计费细则如下:起步价为5元,行驶路程不超过时,租车费为5元,若行驶路程超过,则按每超出(不足也按计程)收费3元计费.依据以上条件,计算梁某一天中出车一次收入的均值和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的中心在原点,焦点F1F2在坐标轴上,离心率为,且过点.

(1)求双曲线的方程;

(2)若点M(3m)在双曲线上,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极小值

(1)求实数的值;

(2)设,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,n为平面α外两条直线,其在平面α内的射影分别是两条直线m1和n1,给出下列4个命题:①m1∥n1m∥n;②m∥nm1与n1平行或重合;③m1⊥n1m⊥n;④m⊥nm1⊥n1.其中所有假命题的序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济的飞速发展,人民生活水平得到很大提高,汽车已经进入千千万万的家庭.大部分的车主在购买汽车时,会在轿车或者中作出选择,为了研究某地区哪种车型更受欢迎以及汽车一年内的行驶里程,某汽车销售经理作出如下统计:

购买了轿车(辆)

购买了(辆)

岁以下车主

岁以下车主

(I)根据表,是否有的把握认为年龄与购买的汽车车型有关?

(II)图给出的是名车主上一年汽车的行驶里程,求这名车主上一年汽车的平均行驶里程(同一组中的数据用该组区间的中点值作代表);

(III)用表中的频率估计概率,随机调查岁以下车主,设其中购买了轿车的人数为,求的分布列与数学期望.

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个不同的红球和个不同的白球,放入同一个袋中,现从中取出个球.

1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法;

2)取出一个红球记分,取出一个白球记分,若取出个球的总分不少于分,则有多少种不同的取法;

3)若将取出的个球放入一箱子中,记“从箱子中任意取出个球,然后放回箱子中”为一次操作,如果操作三次,求恰有一次取到个红球并且恰有一次取到个白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,A(0,1)AB边上的高CD所在直线的方程为x2y40AC边上的中线BE所在直线的方程为2xy30.

(1)求直线AB的方程;

(2)求直线BC的方程;

(3)BDE的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2)(本小题满分7分)选修4-4:坐标系与参数方程

在直接坐标系中,直线l的方程为x-y+4=0,曲线C的参数方程为.

I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4),判断点P与直线l的位置关系;

II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

同步练习册答案