精英家教网 > 高中数学 > 题目详情
2.下列方程中表示相同曲线的是(  )
A.y=x,$\frac{y}{x}=1$B.y=2x,$y=2\sqrt{x^2}$C.|y|=|x|,$\sqrt{y}=\sqrt{x}$D.|y|=|x|,y2=x2

分析 根据函数的三要素,即可得出结论.

解答 解:对于A,定义域不相同;
对于B,y=2$\sqrt{{x}^{2}}$=2|x|,∴曲线不相同;
对于C,定义域不相同;
对于D,表示相同曲线.
故选:D.

点评 本题考查曲线与方程,考查函数的三要素,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=sin(4x-\frac{π}{6})+\sqrt{3}sin(4x+\frac{π}{3})$
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)将函数y=f(x)的图象向左平移$\frac{π}{48}$个单位,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在[-π,0]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知O是坐标原点,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1,F2,离心率$e=\frac{{\sqrt{2}}}{2}$,且过点$P(1,\frac{{\sqrt{2}}}{2})$.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若⊙O是以F1F2为直径的圆,一直线l:y=kx+m与⊙O相切,并与椭圆交于不同的两点A、B,当$\frac{2}{3}≤\overrightarrow{OA}•\overrightarrow{OB}≤\frac{3}{4}$时,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$f(\sqrt{x}-1)=x-2\sqrt{x}$,且f(a)=8,则实数a的值是(  )
A.±3B.16C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C对边分别是a、b、c,且满足2$\overrightarrow{AB}$•$\overrightarrow{AC}$=a2-(b-c)2
(Ⅰ)求角A的大小;
(Ⅱ)若a=4$\sqrt{3}$,△ABC的面积为4$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果直线l经过圆x2+y2-2x-4y=0的圆心,且直线l不通过第四象限,那么直线l的斜率的取值范围是(  )
A.[0,2]B.[0,1]C.[0,$\frac{1}{2}$]D.[0,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知△ABC的内角A,B,C的对边分别为a,b,c,且满足$cosA=\frac{3}{5}$,$\overrightarrow{AB}•\overrightarrow{AC}=3$.则△ABC的面积2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在等差数列{an}中,已知a1+a4+a7=9,a3+a6+a9=21,则数列{an}的前9项和S9=(  )
A.-11B.13C.45D.117

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线3x+$\sqrt{3}$y-4=0的倾斜角是(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步练习册答案