精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知:函数y=f (x)的定义域为R,且对于任意的a,b∈R,都有f (a+b)=f (a)+f (b),且当x>0时,f (x)<0恒成立.
证明:(1)函数y=f (x)是R上的减函数.
(2)函数y=f (x)是奇函数.

解析试题分析:(1)设x1>x2,则x1-x2>0,而f (a+b)=f (a)+f (b),
所以f (x1)=f (x1-x2+x2)=f (x1-x2)+f (x2)<f (x2),
即f (x1)<f (x2),所以函数在R上是减函数.                   ……6分
(2)由f (a+b)=f (a)+f (b)得:f (x-x)=f (x)+f (-x),即f (x)+f (-x)=f (0),而f (0)=0,
所以f (-x)=-f (x),即函数f (x)是奇函数.                    ……12分
考点:本题考查抽象函数及其应用;函数奇偶性的判断.函数的单调性。
点评:本题以抽象函数的单调性证明为载体考查了函数的奇偶性的定义,其中利用“凑配法”得到f(0)=0及f(-x)=-f(x)是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题9分)已知函数
(Ⅰ)若上的最小值是,试解不等式
(Ⅱ)若上单调递增,试求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)(1)已知函数,问方程在区间[-1,0]内是否有
解,为什么?
(2)若方程在(0,1)内恰有一解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)设.
(1)若恒成立,求实数的取值范围;
(2)若时,恒成立,求实数的取值范围;
(3)当时,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)设为非负实数,函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知方程为实数)有两个不相等的实数根,分别求:
(Ⅰ)若方程的根为一正一负,则求实数的取值范围;
(Ⅱ)若方程的两根都在内,则求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=>2),BC=2,且AE=AH=CF=CG,设AE=,绿地面积为.

(1)写出关于的函数关系式,并指出这个函数的定义域;
(2)当AE为何值时,绿地面积最大?  (10分) 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设P:二次函数在区间上存在零点;Q:函数内没有极值点.若“P或Q”为真命题,“P且Q”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数
(1)若的定义域为R,求实数的取值范围.
(2)若的定义域为[-2,1],求实数的值

查看答案和解析>>

同步练习册答案