精英家教网 > 高中数学 > 题目详情
9.在△ABC中,A、B、C的对边分别为a,b,c,已知A≠$\frac{π}{2}$,且3sinAcosB+$\frac{1}{2}$bsin2A=3sinC.
(I)求a的值;
(Ⅱ)若A=$\frac{2π}{3}$,求△ABC周长的最大值.

分析 (I)利用和角的正切公式,结合正弦定理求a的值;
(Ⅱ)若A=$\frac{2π}{3}$,b=2$\sqrt{3}$sinB,c=2$\sqrt{3}$sinC,△ABC周长=3+2$\sqrt{3}$(sinB+sinC)=3+2$\sqrt{3}$[sin($\frac{π}{3}$-C)+sinC]=3+2$\sqrt{3}$sin($\frac{π}{3}$+C),即可求△ABC周长的最大值.

解答 解:(I)∵3sinAcosB+$\frac{1}{2}$bsin2A=3sinC,
∴3sinAcosB+$\frac{1}{2}$bsin2A=3sinAcosB+3cosAsinB,
∴bsinAcosA=3cosAsinB,
∴ba=3b,
∴a=3;
(Ⅱ)由正弦定理可得$\frac{3}{sin\frac{2π}{3}}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$,
∴b=2$\sqrt{3}$sinB,c=2$\sqrt{3}$sinC
∴△ABC周长=3+2$\sqrt{3}$(sinB+sinC)=3+2$\sqrt{3}$[sin($\frac{π}{3}$-C)+sinC]=3+2$\sqrt{3}$sin($\frac{π}{3}$+C)
∵0<C<$\frac{π}{3}$,
∴$\frac{π}{3}$<$\frac{π}{3}$+C<$\frac{2π}{3}$,
∴$\frac{\sqrt{3}}{2}$<sin($\frac{π}{3}$+C)≤1,
∴△ABC周长的最大值为3+2$\sqrt{3}$.

点评 本题考查正弦定理,和角的正切公式,辅助角公式,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知点A(x1,y1),B(x2,y2)是抛物线y2=4x过焦点弦的两端点,且x1+x2=3,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.作出函数y=cosx|tanx|(0≤x<$\frac{3π}{2}$,且x≠$\frac{π}{2}$)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,当x∈[0,3]时,方程f(x)=x的所有根之和为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=|2x-3|的单调递减区间是(-∞,log23).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设a∈R,集合S={x|x2-x≤0},T={x|4ax2-4a(1-2a)x+1≥0},若S∪T=R,则实数a的取值范围是0≤a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在等比数列{an}中,若a1+a2=5,a3+a4=15,则a5+a6的值为(  )
A.25B.20C.75D.45

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x+et|+|x-e-t|(t∈R).
(1)当x、t都是变量时,求f(x)的最小值;
(2)若f(1)<4,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知${f_n}(x)={a_1}x+{a_2}{x^2}+{a_3}{x^3}+…+{a_n}{x^n}$,且${f_n}(-1)={(-1)^n}•n$,n=1,2,3,…
(Ⅰ)求a1,a2,a3
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)当k>7且k∈N*时,证明:对任意n∈N*都有$\frac{2}{{{a_n}+1}}+\frac{2}{{{a_{n+1}}+1}}+\frac{2}{{{a_{n+2}}+1}}+…+\frac{2}{{{a_{nk-1}}+1}}>\frac{3}{2}$成立.

查看答案和解析>>

同步练习册答案