精英家教网 > 高中数学 > 题目详情
(2010•通州区一模)设x>0,y>0,且x+y=1,则xy的最大值为
1
4
1
4
分析:x>0,y>0,且x+y=1⇒1=x+y≥2
xy
⇒xy≤(
x+y
2
)
2
,问题解决.
解答:解:∵x>0,y>0,且x+y=1,
∴1=x+y≥2
xy

∴xy≤(
x+y
2
)
2
=
1
4

故答案为:
1
4
点评:本题考察基本不等式,关键在于对基本不等式x>0,y>0,x+y≥2
xy
的灵活应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•通州区一模)执行图所示的程序,输出的结果为20,则判断框中应填入的条件为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•通州区一模)用若干个大小相同,棱长为1的正方体摆成一个立体模型,其三视图如图3,则此立体模型的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•通州区一模)设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右两个焦点,椭圆C上一点P(1,
3
2
)到F1、F2两点的距离之和等于4.又直线l:y=
1
2
x+m与椭圆C有两个不同的交点A、B,O为坐标原点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l经过点F1,求△ABF2的面积;
(Ⅲ)求
OA
 • 
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•通州区一模)设不等式组
-2≤x≤2
0≤y≤2
确定的平面区域为U,
x-y+2≥0
x+y-2≤0
y≥0
确定的平面区域为V.
(Ⅰ)定义坐标为整数的点为“整点”.在区域U内任取一整点Q,求该点在区域V的概率;
(Ⅱ)在区域U内任取一点M,求该点在区域V的概率.

查看答案和解析>>

同步练习册答案