【题目】在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l上.若圆C上存在点M,使MA=2MO,则圆心C的横坐标a的取值范围是( )
A.B.[0,1]
C.D.
【答案】A
【解析】
设,圆C的方程为(x-a)2+[y-2(a-2)]2=1,设点M(x,y),根据MA=2MO,可得点的轨迹是圆:x2+(y+1)2=4,根据两圆有公共点列式可解得结果.
设,因为圆心在直线y=2x-4上,所以圆C的方程为(x-a)2+[y-2(a-2)]2=1,
设点M(x,y),因为MA=2MO,所以,
化简得x2+y2+2y-3=0,即x2+(y+1)2=4,
所以点M在以D(0,-1)为圆心,2为半径的圆上,
由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点,
则|2-1|≤|CD|≤2+1,即,
由得5a2-12a+8≥0,解得a∈R;
由≤3得5a2-12a≤0,解得0≤a≤,
所以点C的横坐标a的取值范围为.
故选:A.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,其右焦点为,且点在椭圆C上.
求椭圆C的方程;
设椭圆的左、右顶点分别为A、B,M是椭圆上异于A,B的任意一点,直线MF交椭圆C于另一点N,直线MB交直线于Q点,求证:A,N,Q三点在同一条直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一名高二学生盼望2020年进入某名牌大学学习,假设该名牌大学有以下条件之一均可录取:①2020年2月通过考试进入国家数学奥赛集训队(集训队从2019年10月省数学竞赛一等奖中选拔):②2020年3月自主招生考试通过并且达到2020年6月高考重点分数线,③2020年6月高考达到该校录取分数线(该校录取分数线高于重点线),该学生具备参加省数学竞赛、自主招生和高考的资格且估计自己通过各种考试的概率如下表
省数学竞赛一等奖 | 自主招生通过 | 高考达重点线 | 高考达该校分数线 |
0.5 | 0.6 | 0.9 | 0.7 |
若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取)
(Ⅰ)求该学生参加自主招生考试的概率;
(Ⅱ)求该学生参加考试的次数的分布列及数学期望;
(Ⅲ)求该学生被该校录取的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体中,点为的中点,点为上的动点,给出下列说法:①与所成的最大角为;②的最小值为;③与垂直;④若为的中点,则四面体的体积为.其中正确的个数有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型超市抽查了100天该超市的日纯利润数据,并分成了以下几组(单位:万元):,,,,,.统计结果如下表所示(统计表中每个小组取中间值作为该组数据的替代值):
组别 | ||||||
频数 | 5 | 20 | 30 | 30 | 10 | 5 |
(1)求这100天该大型超市日纯利润的平均数及中位数;
(2)该天型超市负责人决定利用分层抽样的方法从前2组中随机抽出5天数据分析日纯利润较少的原因,并从这5天数据中再抽出其中2天数据进行深入分析,求这2天的数据恰好来自不同组的概率;
(3)利用上述样本分布估计总体分布,解决下面问题:该大型超市总经理根据每天的纯利润给员工制定了两种奖励方案:
方案一:记日纯利润为万元,当时,奖励每位员工40元/天;当时,奖励每位员工80元/天;当时,奖励每位员工120元/天;
方案二:日纯利润低于总体中位数时每名员工发放奖金50元/天,日纯利润不低于总体中位数时每名员工发放80元奖金/天;
“小张恰好为该大型超市的一位员工,则从统计角度看,小张选择哪种奖励方案更有利?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解市民对开设传统文化课的态度,教育机构随机抽取了位市民进行了解,发现支持开展的占,在抽取的男性市民人中持支持态度的为人.
(1)完成列联表,并判断是否有的把握认为性别与支持与否有关?
支持 | 不支持 | 合计 | |
男性 | |||
女性 | |||
合计 |
(2)为了进一步征求对开展传统文化的意见和建议,从抽取的位市民中对不支持的按照分层抽样的方法抽取位市民,并从抽取的人中再随机选取人进行座谈,求选取的人恰好为男女的概率.
附:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com