精英家教网 > 高中数学 > 题目详情

【题目】已知函数(其中)的图象的两条相邻对称轴之间的距离为,且图象上一个最低点为.

(1)求函数的解析式;

(2)当时,求函数的值域;

(3)若方程上有两个不相等的实数根,求的值.

【答案】(1);(2);(3).

【解析】试题分析:(1)根据函数f(x)的图象与性质求出Tω,再求得Aφ的值,即可写出f(x);
(2)根据求出的最大、最小值,写出f(x)的值域;
(3)根据函数f(x)的取值范围,得出方程有两个不相等的实数根时
x1与x2的关系,利用对称性计算cos(x1-x2)的值.

试题解析:

(1)由最低点为

由图象的两条相邻对称轴之间的距离为

由点在图象上得

,∴

(2)∵

,即时,取得最大值1;

,即时,取得最小值.

故当时,函数的值域为

(3)∵,∴

又方程上有两个不相等的实数根

,即

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线 是焦点,直线是经过点的任意直线.

(Ⅰ)若直线与抛物线交于两点,且是坐标原点, 是垂足),求动点的轨迹方程;

(Ⅱ)若两点在抛物线上,且满足,求证:直线必过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,椭圆的离心率为是椭圆的右焦点,直线的斜率为为坐标原点.

I的方程;

II设过点的动直线相交于两点,当的面积最大时,求的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数).

(1)当时,求函数的图象在点处的切线方程;

(2)设函数(其中为常数),若函数在区间上不存在极值,且存在

,求的取值范围;

(3)已知,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程

(1)求该方程表示一条直线的条件;

(2)当为何实数时,方程表示的直线斜率不存在?求出这时的直线方程;

(3)已知方程表示的直线轴上的截距为-3,求实数的值;

(4)若方程表示的直线的倾斜角是45°,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与圆都相内切即圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点为坐标原点过点的平行线交曲线两个不同的点

(1)求曲线的方程

(2)试探究的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义在上的函数,并且满足下面三个条件:①对任意正数,都有;②当时, ;③.

(1)求 的值;

(2)证明上是减函数;

(3)如果不等式成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次国际学术会议上,来自四个国家的五位代表被安排坐在一张圆桌,为了使他们能够自由交谈,事先了解到的情况如下:

甲是中国人,还会说英语.

乙是法国人,还会说日语.

丙是英国人,还会说法语.

丁是日本人,还会说汉语.

戊是法国人,还会说德语.

则这五位代表的座位顺序应为( )

A. 甲丙丁戊乙 B. 甲丁丙乙戊

C. 甲乙丙丁戊 D. 甲丙戊乙丁

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景区客栈的工作人员为了控制经营成本,减少浪费,合理安排入住游客的用餐,他们通过统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会发生周期性的变化,并且有以下规律:

①每年相同的月份,入住客栈的游客人数基本相同;

②入住客栈的游客人数在2月份最少,在8月份最多,相差约400人;

③2月份入住客栈的游客约为100人,随后逐月递增直到8月份达到最多.

(1)若入住客栈的游客人数与月份之间的关系可用函数 )近似描述,求该函数解析式;

(2)请问哪几个月份要准备不少于400人的用餐?

查看答案和解析>>

同步练习册答案