精英家教网 > 高中数学 > 题目详情
9.设集合A={x|$\frac{1}{32}$≤2x≤4},B={x|m-1<x<2m+1},若A∪B=A,求m的取值范围.

分析 先化简集合A,再分类讨论即可求出m的取值范围.

解答 解:集合A={x|$\frac{1}{32}$≤2x≤4}={x|-5≤x≤2},B={x|m-1<x<2m+1},
∵A∪B=A,
∴B⊆A,
①当B=∅时,满足B⊆A,此时m-1≥2m+1,即m≤-2;
②当B≠∅,即m>-2时,
∴$\left\{\begin{array}{l}{m-1<2m+1}\\{m-1≥-5}\\{2m+1≤2}\end{array}\right.$,
解得-2<m≤$\frac{1}{2}$,
综上所述m的取值范围是:(-∞,$\frac{1}{2}$].

点评 本题考查了集合的包含关系判断及应用,考查了不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.如图,四棱锥P-ABCD的各棱长都为a.
(1)用向量法证明BD⊥PC;
(2)求|$\overrightarrow{AC}$+$\overrightarrow{PC}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.目标函数z=x-y,在如图所示的可行域内(阴影部分且包括边界),使z取得最小值的点的坐标为(  )
A.(1,1)B.(3,2)C.(5,2)D.(4,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$在同一平面内,且$\overrightarrow a$=(-1,2).
(1)若$\overrightarrow c$=(m-1,3m),且$\overrightarrow c$∥$\overrightarrow a$,求m的值;
(2)若|$\overrightarrow b$|=$\sqrt{5}$,且($\overrightarrow a$-2$\overrightarrow b$)⊥$\overrightarrow a$,求向量$\overrightarrow a$与$\overrightarrow b$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{a}$=(sinωx,1),$\overrightarrow{b}$=(1,cosωx),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的周期为π,则f(x)的一个对称中心为(  )
A.($\frac{π}{4}$,0)B.(-$\frac{π}{4}$,0)C.($\frac{π}{8}$,0)D.(-$\frac{π}{8}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=log${\;}_{\frac{1}{2}}$sin(2πx+$\frac{π}{4}$)的单调递减区间是(k-$\frac{1}{8}$,k+$\frac{1}{8}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设等差数列{an}的前n项和为Sn,且a2=8,S4=40.数列{bn}的前n项和为Tn,且Tn-2bn+3=0,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=$\left\{\begin{array}{l}{{a}_{n},n为奇数}\\{{b}_{n},n为偶数}\end{array}\right.$,求数列{cn}的前2n项和P2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC的三个顶点坐标为A(0,0),B(8,4),C(-2,4).
(1)求证:△ABC是直角三角形;
(2)若△ABC的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,与y=x-1为同一函数的是(  )
A.y=$\sqrt{{{(x-1)}^2}}$B.y=$\root{3}{{{{(x-1)}^3}}}$C.y=$\frac{{{x^2}-1}}{x+1}$D.$y={(\sqrt{x-1})^2}$

查看答案和解析>>

同步练习册答案