【题目】如图,在四棱锥中,底面为矩形,平面平面,,,为的中点,为上一点,交于点.
(1)证明:平面;
(2)求二面角的余弦值.
【答案】(1)见解析(2)
【解析】试题分析:(1)连接交于点,连接,要证平面,转证即可;
(2)取的中点为坐标原点,建立如图所示的空间直角坐标系,平面的法向量为,平面的法向量为利用公式即可得到二面角的余弦值.
试题解析:
(Ⅰ)证明:如图5,连接交于点,连接,
∵平面 平面且为矩形,
∴平面,
∴.
则在直角三角形中,.
又∵为的中点,
∴.
又∵,则为的中点,
在三角形中,,
∵平面,
∴平面.
(Ⅱ)解:取的中点为坐标原点,建立如图6所示的空间直角坐标系.
取的中点,连接,
在中,,分别为,的中点,,
在中,为的中点,则为的中点, 故.
,
,
设,,
则,.
设平面的法向量为
,
解得
平面的法向量为
设二面角的平面角为
,因为为锐角,
所以二面角的平面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援.现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于厘米的玉米为高茎玉米,否则为矮茎玉米
(1)完成列联表,并判断是否可以在犯错误概率不超过的前提下,认为抗倒伏与玉米矮茎有关?
(2)为了改良玉米品种,现采用分层抽样的方式从抗倒伏的玉米中抽出株,再从这株玉米中选取株进行杂交实验,选取的植株均为矮茎的概率是多少?
(,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】扬州大学数学系有6名大学生要去甲、乙两所中学实习,每名大学生都被随机分配到两所中学的其中一所.
(1)求6名大学生中至少有1名被分配到甲学校实习的概率;
(2)设,分别表示分配到甲、乙两所中学的大学生人数,记,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学随机选取了名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图,观察图中数据,完成下列问题.
()求的值及样本中男生身高在(单位:)的人数.
()假设用一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高.
()在样本中,从身高在和(单位:)内的男生中任选两人,求这两人的身高都不低于的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校的特长班有名学生,其中有体育生名,艺术生名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于次/分到次/分之间.现将数据分成五组,第一组,第二组,…,第五章,按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三组的频率之比为.
(1)求的值,并求这名同学心率的平均值;
(2)因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若从第一组和第二组的学生中随机抽取一名,该学生是体育生的概率为,请将下面的列联表补充完整,并判断是否有的把握认为心率小于次/分与常年进行系统的身体锻炼有关?说明你的理由.
心率小于60次/分 | 心率不小于60次/分 | 合计 | |
体育生 | 20 | ||
艺术生 | 30 | ||
合计 | 50 |
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,圆的参数方程为 (为参数),圆与圆外切于原点,且两圆圆心的距离,以坐标原点为极点, 轴正半轴为极轴建立极坐标系.
(1)求圆和圆的极坐标方程;
(2)过点的直线与圆异于点的交点分别为点,与圆异于点的交点分别为点,且,求四边形面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com