精英家教网 > 高中数学 > 题目详情

【题目】某公司新研发了一款手机应用APP,投入市场三个月后,公司对部分用户做了调研:抽取了400位使用者,每人填写一份综合评分表(满分为100分).现从400份评分表中,随机抽取40份(其中男、女使用者的评分表各20份)作为样本,经统计得到如下的茎叶图:

女性使用者评分

男性使用者评分

7

6

7 8 9 9

1 2 5

7

0 2 2 3 4 5 6 6 7 8 9

0 3 3 3 4 4 5 6 6 8

8

2 4 4 9

0 0 1 2 2 2

9

2

记该样本的中位数为,按评分情况将使用者对该APP的态度分为三种类型:评分不小于的称为满意型,评分不大于的称为不满意型,其余的都称为须改进型”.

1)求的值,并估计这400名使用者中须改进型使用者的个数;

2)为了改进服务,公司对不满意型使用者进行了回访,根据回访意见改进后,再从不满意型使用者中随机抽取3人进行第二次调查,记这3人中的女性使用者人数为,求的分布列和数学期望.

【答案】1,约130人;(2)详见解析.

【解析】

(1)根据茎叶图以及中位数的概念可得中位数,根据古典概型的概率公式可得样本中须改进型使用者的概率,由此可得答案;

(2) 不满意型使用者共7人,其中男性5人,女性2人,故的所有可能的取值为0,1,2 ,再根据古典概型的概率公式计算概率,可得分布列和数学期望.

1)中位数等于,所以40个样本数据中共有13人是须改进型,从而可得400名使用者中约人是须改进型使用者;

2)不满意型使用者共7人,其中男性5人,女性2人,

的所有可能的取值为0,1,2

;;

的分布列为

所以的数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中为正实数.

1)若的图象总在函数的图象的下方,求实数的取值范围;

2)设,证明:对任意,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,.

(1)为递增数列,成等差数列,的值;

(2),是递增数列,是递减数列,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.

1)求曲线C的极坐标方程;

2)在平面直角坐标系xOy中,A(﹣20),B0,﹣2),M是曲线C上任意一点,求ABM面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过椭圆 的左右焦点分别作直线 交椭圆于,且.

(1)求证:当直线的斜率与直线的斜率都存在时, 为定值;

(2)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为两个随机事件,给出以下命题:(1)若为互斥事件,且,则;(2)若,则为相互独立事件;(3)若,则为相互独立事件;(4)若,则为相互独立事件;(5)若,则为相互独立事件;其中正确命题的个数为( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是奇函数的导函数,,当时,,则使得成立的的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB两点的坐标分别为(﹣10),(10.条件甲:ABC三点构成以∠C为钝角的三角形;条件乙:点C的坐标是方程x2+2y2=1y≠0)的解,则甲是乙的(  )

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

已知函数(其中),其部分图像如图所示.

I)求的解析式;

II)求函数在区间上的最大值及相应的值。

查看答案和解析>>

同步练习册答案