精英家教网 > 高中数学 > 题目详情

(几何证明选讲)如图,⊙O和⊙O'相交于A,B两点,AC是⊙O'的切线,交⊙O于点C,AD是⊙O的切线,交⊙O'于点D,若BC=2,BD=8,则AB=________.

4
分析:根据题意在△ACB与△ADB中,∠CAB=∠ADB,∠DAB=∠ACB,从而可判断△ACB与△ADB相似,从而有,而BC=2,BD=8,从而可求得AB.
解答:∵⊙O和⊙O'相交于A,B两点,AC是⊙O'的切线,交⊙O于点C,AD是⊙O的切线,交⊙O'于点D,
∴在△ACB与△ADB中,∠CAB=∠ADB,∠DAB=∠ACB,
∴△ACB∽△ADB,

又BC=2,BD=8,
∴AB2=2×8=16,∴AB=4.
故答案为:4.
点评:本题考查圆与圆的位置关系及其判定,难点在于圆的切线定理的应用,从而利用两三角形相似解决问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(选修4-1:几何证明选讲)
如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D,若PE=PA,∠ABC=60°,PD=1,BD=8,求线段BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(几何证明选讲)如图,AB、CD是圆O的两条弦,且AB是线段CD的中垂线,已知AB=10,CD=8,则线段AC的长度为
4
5
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)几何证明选讲:如图,CB是⊙O的直径,AP是⊙O的切线,A为切点,AP与CB的延长线交于点P,若PA=8,PB=4,求AC的长度.
(2)坐标系与参数方程:在极坐标系Ox中,已知曲线C1:ρcos(θ+
π
4
)
=
2
2
与曲线C2;ρ=1相交于A、B两点,求线段AB的长度.
(3)不等式选讲:解关于x的不等式|x-1|+a-2≤0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲.
如图,AB是⊙O的一条切线,切点为B,ADE、CFD、CGE都是⊙O的割线,已知AC=AB.证明:
(1)AD•AE=AC2
(2)FG∥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)(几何证明选讲)如图,AB是半圆O的直径,点C在半圆上,CD⊥AB,垂足为D,且AD=5DB,设∠COD=θ,则tanθ的值为
5
2
5
2

(2)(坐标系与参数方程)圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ,则经过两圆圆心的直线的直角坐标方程为
x-y-2=0
x-y-2=0

(3)(不等式选讲)若不等式|3x-b|<4的解集中的整数有且仅有0,1,2,则b的取值范围是
(2,4)
(2,4)

查看答案和解析>>

同步练习册答案