精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面是以为中心的菱形, 底面上一点,且.

1)证明: 平面

2)若,求四棱锥的体积.

【答案】1)详见解析;(2.

【解析】试题分析:(1)因为底面,所以有,因此欲证平面,只要证,而这一点可通过连结,利用菱形的性质及勾股定理解决.

2)欲求四棱锥的体积.,必须先求出,连结,设,在利用余弦定理求出,由三个直角三角形,依据勾股定理建立关于的方程即可.

解:(1)如图,因为菱形, 为菱形中心,连结,则,因,故

又因为,且,在

所以,故

底面,所以,从而与平面内两条相交直线都垂直,所以平面

2)解:由(1)可知,

,由底面知, 为直角三角形,故

也是直角三角形,故

连结,在,

由已知,故为直角三角形,则

,得(舍去),即

此时

所以四棱锥的体积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的两个焦点是F1(﹣2,0),F2(2,0),且椭圆C经过点A(0, ).

(1)求椭圆C的标准方程;

(2)若过椭圆C的左焦点F1(﹣2,0)且斜率为1的直线l与椭圆C交于PQ两点,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 令Tn= ,称Tn为数列a1 , a2 , …,an的“理想数”,已知数列a1 , a2 , …,a502的“理想数”为2012,那么数列2,a1 , a2 , …,a502的“理想数”为(
A.2010
B.2011
C.2012
D.2013

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知D是△ABC边BC延长线上一点,记 .若关于x的方程2sin2x﹣(λ+1)sinx+1=0在[0,2π)上恰有两解,则实数λ的取值范围是(
A.λ<﹣2
B.λ<﹣4
C.
D.λ<﹣4或

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(其中A>0, )的图象如图所示.

(1)求A,w及φ的值;
(2)若tana=2,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(cosx,﹣ ), =(sinx+cosx,1),f(x)=
(1)若0<α< ,sinα= ,求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知cosα= ,cosβ= ,且α,β∈(0, ),求cos(α﹣β),sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an}、{bn}的通项公式;
(2)求数列 的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四边形ABCD中,ACCDAB=1, ,sin∠BCD.

(1)求BC边的长;

(2)求四边形ABCD的面积.

查看答案和解析>>

同步练习册答案