【题目】(本小题满分12分)在中,内角对边的边长分别是,已知,.(Ⅰ)若的面积等于,求;(Ⅱ)若,求的面积.
科目:高中数学 来源: 题型:
【题目】某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少,从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%.
(1)求第n年初M的价值an的表达式;
(2)设An=.若An大于80万元,则M继续使用,否则须在第n年初对M更新.证明:须在第9年初对M更新.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 (a>0).
(Ⅰ)当a=1时,求函数f(x)在点(2,f(2))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知圆心在x轴上,半径为2的圆C位于y轴右侧,且与直线x- y+2=0相切.
(1)求圆C的方程.
(2)在圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A,B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos2x,g(x)= sinxcosx.
(1)若直线x=a是函数y=f(x)的图象的一条对称轴,求g(2a)的值;
(2)若0≤x≤ ,求h(x)=f(x)+g(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆上的动点,点Q在NP上,点G在MP上,且满足.
(I)求点G的轨迹C的方程
(II)过点(2,0)作直线,与曲线C交于A、B两点,O是坐标原点,设 是否存在这样的直线,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线的方程若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前n项和为,且(n∈N*)
(1)求的通项公式;
(2)数列满足,求数列的前n项和;
(3)若对一切正整数n恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com