【题目】设数列{an}的前n项和为Sn , 已知2Sn=3n+3.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn},满足anbn=log3an , 求{bn}的前n项和Tn .
【答案】解:(Ⅰ)因为2Sn=3n+3,所以2a1=31+3=6,故a1=3,
当n>1时,2Sn﹣1=3n﹣1+3,
此时,2an=2Sn﹣2Sn﹣1=3n﹣3n﹣1=2×3n﹣1 , 即an=3n﹣1 ,
所以an= .
(Ⅱ)因为anbn=log3an , 所以b1= ,
当n>1时,bn=31﹣nlog33n﹣1=(n﹣1)×31﹣n ,
所以T1=b1= ;
当n>1时,Tn=b1+b2+…+bn= +(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),
所以3Tn=1+(1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n),
两式相减得:2Tn= +(30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n)= + ﹣(n﹣1)×31﹣n= ﹣ ,
所以Tn= ﹣ ,经检验,n=1时也适合,
综上可得Tn= ﹣
【解析】(Ⅰ)利用2Sn=3n+3,可求得a1=3;当n>1时,2Sn﹣1=3n﹣1+3,两式相减2an=2Sn﹣2Sn﹣1 , 可求得an=3n﹣1 , 从而可得{an}的通项公式;(Ⅱ)依题意,anbn=log3an , 可得b1= ,当n>1时,bn=31﹣nlog33n﹣1=(n﹣1)×31﹣n , 于是可求得T1=b1= ;当n>1时,Tn=b1+b2+…+bn= +(1×31+2×3﹣2+…+(n﹣1)×31﹣n),利用错位相减法可求得{bn}的前n项和Tn .
【考点精析】掌握数列的前n项和是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系.
科目:高中数学 来源: 题型:
【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如图13所示.
(1)求频率分布直方图中a的值;
(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= x2﹣ax﹣1,x∈[﹣5,5]
(1)当a=2,求函数f(x)的最大值和最小值;
(2)若函数f(x)在定义域内是单调函数,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x+1),g(x)=loga(1﹣x)其中(a>0且a≠1).
(1)求函数f(x)+g(x)的定义域;
(2)判断f(x)+g(x)的奇偶性,并说明理由;
(3)求使f(x)﹣g(x)>0成立的x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,把方程f(x)=x的根按从小到大的顺序排列成一个数列,则该数列的通项公式为( )
A. (n∈N*)
B.an=n(n﹣1)(n∈N*)
C.an=n﹣1(n∈N*)
D.an=2n﹣2(n∈N*)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com