精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}的前n项和为Sn , 已知2Sn=3n+3.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn},满足anbn=log3an , 求{bn}的前n项和Tn

【答案】解:(Ⅰ)因为2Sn=3n+3,所以2a1=31+3=6,故a1=3,
当n>1时,2Sn1=3n1+3,
此时,2an=2Sn﹣2Sn1=3n﹣3n1=2×3n1 , 即an=3n1
所以an=
(Ⅱ)因为anbn=log3an , 所以b1=
当n>1时,bn=31nlog33n1=(n﹣1)×31n
所以T1=b1=
当n>1时,Tn=b1+b2+…+bn= +(1×31+2×32+…+(n﹣1)×31n),
所以3Tn=1+(1×30+2×31+3×32+…+(n﹣1)×32n),
两式相减得:2Tn= +(30+31+32+…+32n﹣(n﹣1)×31n)= + ﹣(n﹣1)×31n=
所以Tn= ,经检验,n=1时也适合,
综上可得Tn=
【解析】(Ⅰ)利用2Sn=3n+3,可求得a1=3;当n>1时,2Sn1=3n1+3,两式相减2an=2Sn﹣2Sn1 , 可求得an=3n1 , 从而可得{an}的通项公式;(Ⅱ)依题意,anbn=log3an , 可得b1= ,当n>1时,bn=31nlog33n1=(n﹣1)×31n , 于是可求得T1=b1= ;当n>1时,Tn=b1+b2+…+bn= +(1×31+2×32+…+(n﹣1)×31n),利用错位相减法可求得{bn}的前n项和Tn
【考点精析】掌握数列的前n项和是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如图13所示.

1)求频率分布直方图中a的值;

2)分别求出成绩落在[5060)[6070)中的学生人数;

3从成绩在[5070)的学生中任选2人,求此2人的成绩都在[6070)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,若 处切线的斜率为

(1)求函数的解析式及其单调区间;

(2)若实数满足,且对于任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2﹣ax﹣1,x∈[﹣5,5]
(1)当a=2,求函数f(x)的最大值和最小值;
(2)若函数f(x)在定义域内是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)当时,求曲线在点处的切线方程;

(2)当时,求函数的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,是奇函数且在区间(0,1)内单调递减的函数是(
A.y=log2x
B.y=x﹣
C.y=﹣x3
D.y=tanx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线与曲线恰好相切于点,求实数的值;

(2)当时,恒成立,求实数的取值范围;

(3)求证:. .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+1),g(x)=loga(1﹣x)其中(a>0且a≠1).
(1)求函数f(x)+g(x)的定义域;
(2)判断f(x)+g(x)的奇偶性,并说明理由;
(3)求使f(x)﹣g(x)>0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,把方程f(x)=x的根按从小到大的顺序排列成一个数列,则该数列的通项公式为(
A. (n∈N*
B.an=n(n﹣1)(n∈N*
C.an=n﹣1(n∈N*
D.an=2n﹣2(n∈N*

查看答案和解析>>

同步练习册答案