精英家教网 > 高中数学 > 题目详情
已知P是椭圆上的点,F1、F2分别是椭圆的左、右焦点,若,则的面积为( )
A.3B.2C.D.
A
由椭圆定义:
.在中,由余弦定理得:
。即

。故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆中心在坐标原点,焦点在轴上,且经过三点.
(1)求椭圆的方程;
(2)设直线与椭圆交于两点.
①若,求的长;
②证明:直线与直线的交点在直线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆的短轴端点和焦点所组成的四边形周长等于8。
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的两个焦点F1(-,0),F2(,0),过F1且与坐标轴不平行的直线l1与椭圆相交于MN两点,△MNF2的周长等于8. 若过点(1,0)的直线l与椭圆交于不同两点PQx轴上存在定点E(m,0),使·恒为定值,则E的坐标为(  ▲  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的左右焦点是F1,F2,设P是双曲线右支上一点,上的投影的大小恰好为||,且它们的夹角为,则双曲线的离心率e为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题12分)已知椭圆的中心在坐标原点,右焦点F的坐标为(3,0),直线l交椭圆于A、B两点,线段AB的中点为M(1,),
(1)求椭圆的方程;
(2)动点N满足 ,求动点N的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆C的中心为坐标原点O,焦点在y轴上,离心率,椭圆上的点到焦点的最短距离为, 直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且.
(1)求椭圆方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,其中左焦点
①求椭圆的方程
②若直线与椭圆交于不同的两点,且线段的中关于直线的对称点在圆上,求的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

的一个顶点P(7,12)在双曲线上,另外两顶点F1、F2为该双曲线的左、右焦点,则的内心坐标为____

查看答案和解析>>

同步练习册答案