精英家教网 > 高中数学 > 题目详情

【题目】如图,在四边形ABCD中,AB=BC=2,∠ABC=90°,DA=DC= .现沿对角线AC折起,使得平面DAC⊥平面ABC,此时点A,B,C,D在同一个球面上,则该球的体积是(
A.
B.
C.
D.12π

【答案】A
【解析】解:在图2中,取AC的中点E,连结DE,BE, ∵AD=CD,∴DE⊥AC,
∵平面ACD∩平面ABC=AC,平面ACD⊥平面ABC,
DE平面ACD,
∴DE⊥平面ABC,
∵∠ABC=90°,
∴棱锥外接球的球心O在直线DE上,
∵AD=CD= ,AB=BC=2,∠ABC=90°,
∴BE=AE=CE= AC= ,DE= =2,
设OE=x,则OD=2﹣x,OB= =
∴2﹣x= ,解得x=
∴外接球的半径r=2﹣x=
∴外接球的体积V= = ×( 3=
故选A.

【考点精析】解答此题的关键在于理解球内接多面体的相关知识,掌握球的内接正方体的对角线等于球直径;长方体的外接球的直径是长方体的体对角线长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库MN (异于村庄A),要求PMPNMN2(单位:千米).如何设计, 可以使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,若函数 处与直线 相切.
(Ⅰ)求实数 的值;
(Ⅱ)求函数 上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现采用随机模拟的方法估计某运动员射击次,至少击中次的概率:先由计算机给出之间取整数值的随机数,指定表示没有击中目标,表示击中目标,以个随机数为一组,代表射击次的结果,经随机模拟产生了组随机数:

根据以上数据统计该运动员射击次至少击中次的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】70年代中期,美国各所名牌大学校园内,人们都像发疯一般,夜以继日,废寝忘食地玩一个数学游戏.这个游戏十分简单:任意写出一个自然数N,并且按照以下的规律进行变换:如果是个奇数,则下一步变成3N+1;如果是个偶数,则下一步变成 .不单单是学生,甚至连教师、研究员、教授与学究都纷纷加入.为什么这个游戏的魅力经久不衰?因为人们发现,无论N是怎样一个数字,最终都无法逃脱回到谷底1.准确地说,是无法逃出落入底部的4﹣2﹣1循环,永远也逃不出这样的宿命.这就是著名的“冰雹猜想”.按照这种运算,自然数27经过十步运算得到的数为(
A.142
B.71
C.214
D.107

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:对数 有意义;命题q:实数t满足不等式 .(Ⅰ)若命题p为真,求实数 的取值范围;
(Ⅱ)若命题p是命题q的充分不必要条件,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B两点.
(1)如果直线l过抛物线的焦点,求 · 的值;
(2)如果 · =-4,证明直线l必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,且|AF|=2|BF|,则直线AB的斜率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为日.(结果保留一位小数,参考数据:lg2≈0.30,lg3≈0.48)

查看答案和解析>>

同步练习册答案